Kinematic analysis of the Large Magellanic Cloud using Gaia DR3

Author:

Jiménez-Arranz Ó.ORCID,Romero-Gómez M.,Luri X.ORCID,McMillan P. J.ORCID,Antoja T.ORCID,Chemin L.ORCID,Roca-Fàbrega S.ORCID,Masana E.ORCID,Muros A.ORCID

Abstract

Context. The high quality of the Gaia mission data has allowed for studies of the internal kinematics of the Large Magellanic Cloud (LMC) to be undertaken in unprecedented detail, providing insights into the non-axisymmetric structure of its disc. Recent works by the Gaia Collaboration have already made use of the excellent proper motions of Gaia DR2 and Gaia EDR3 for a first analysis of this sort, but these were based on limited strategies aimed at distinguishing the LMC stars from the Milky Way foreground that did not use all the available information. In addition, these studies could not access the third component of the stellar motion, namely, the line-of-sight velocity – which has now become available via Gaia DR3 for a significant number of stars. Aims. Our aim is twofold: 1) to define and validate an improved, more efficient and adjustable selection strategy to distinguish the LMC stars from the Milky Way foreground; 2) to check the possible biases that assumed parameters or sample contamination from the Milky Way can introduce in analyses of the internal kinematics of the LMC based on Gaia data. Methods. Our selection was based on a supervised neural network classifier, using as much as of the Gaia DR3 data as possible. Based on this classifier, we selected three samples of candidate LMC stars with different degrees of completeness and purity. We validated these classification results using different test samples and we compared them with the results from the selection strategy used in the Gaia Collaboration papers, based only on the proper motions. We analysed the resulting velocity profiles and maps for the different LMC samples and we checked how these results change when we use the line-of-sight velocities that are available for a subset of stars. Results. We show that the contamination in the samples from Milky Way stars basically affects the results for the outskirts of the LMC. We also show that the analysis formalism used in absence of line-of-sight velocities does not bias the results for the kinematics in the inner disc. Here, for the first time, we performed a kinematic analysis of the LMC using samples with the full three dimensional (3D) velocity information from Gaia DR3. Conclusions. The detailed 2D and 3D kinematic analysis of the LMC internal dynamics demonstrate that: 1) the dynamics in the inner disc is mainly bar dominated; 2) the kinematics on the spiral arm overdensity seems to be dominated by an inward motion and a rotation that is faster than that of the disc in the part of the arm attached to the bar; 3) the contamination of Milky Way stars seem to dominate the outer parts of the disc and mainly affects old evolutionary phases; and 4) uncertainties on the assumed disc morphological parameters and line-of-sight velocity of the LMC can (in some cases) have significant effects on the results of the analysis.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3