Importance of source structure on complex organics emission

Author:

Nazari P.ORCID,Tabone B.ORCID,Rosotti G. P.ORCID

Abstract

Context. The hot molecular core phase of massive star formation shows emission from complex organic molecules. However, these species are only detected toward a fraction of high-mass protostars. In particular, there is a spread of ~2 orders of magnitude in methanol emission intensity from high-mass protostars. Aims. The goal of this work is to answer the question of whether high-mass disks can explain the lack of methanol emission from some massive protostellar systems. Methods. We considered an envelope-only and an envelope-plus-disk model and used the code RADMC-3D to calculate the methanol emission. High and low millimeter (mm) opacity dust (representing large and small dust distributions) were considered for both models separately, and the methanol abundance was parameterized. Viscous heating was included due to the high accretion rates of these objects in the disk. Results. In contrast with low-mass protostars, the presence of a disk does not significantly affect the temperature structure and methanol emission. The shadowing effect of the disk is not as important for high-mass objects, and the disk midplane is hot because of viscous heating, which is effective due to the high accretion rates. The methanol emission is lower for models with high mm opacity dust because the dust attenuation blocks the emission in the envelope and hides it in the disk through continuum oversubtraction, but the disk needs to be large for this to become effective. A minimum disk size of ~2000–2500 au is needed (at L = 104 L) with high mm opacity dust for drop of a factor of about one order of magnitude in the methanol emission compared with the envelope-only models with low mm opacity dust. Consistent with observations of infrared absorption lines toward high-mass protostars, we find a vertical temperature inversion, that is, higher temperatures in the disk midplane than the disk surface, at radii ≲50 au for models with L = 104 L and high mm opacity dust as long as the envelope mass is ≳550 M ( = 3.6 × 10−3 M yr−1). Conclusions. The large observed scatter in methanol emission from massive protostars can be mostly explained toward lower-luminosity objects (~103 L) with the envelope-plus-disk models including low and high mm opacity dust. The methanol emission variation toward sources with high luminosities (≳104 L) cannot be explained by models with or without a disk with a relatively high gas-phase abundance of methanol. However, the luminosity-to-mass ratios of these objects suggest that they might be associated with hypercompact or ultracompact HII regions. Therefore, the low methanol emission toward the high-luminosity sources can be explained by them hosting an HII region in which methanol is absent.

Funder

Dutch Research Council

Danish National Research Foundation

Marie Sklodowska-Curie action

Netherlands Organisation for Scientific Research

STFC Ernest Rutherford Fellowship

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3