StarDICE

Author:

Betoule Marc,Antier Sarah,Bertin Emmanuel,Blanc Pierre Éric,Bongard Sébastien,Cohen Tanugi Johann,Dagoret-Campagne Sylvie,Feinstein Fabrice,Hardin Delphine,Juramy Claire,Le Guillou Laurent,Le Van Suu Auguste,Moniez Marc,Neveu Jérémy,Nuss Éric,Plez Bertrand,Regnault Nicolas,Sepulveda Eduardo,Sommer Kélian,Souverin Thierry,Wang Xiao Feng

Abstract

Context. The Hubble diagram of type-Ia supernovae (SNe-Ia) provides cosmological constraints on the nature of dark energy with an accuracy limited by the flux calibration of currently available spectrophotometric standards. This motivates new developments to improve the link between existing astrophysical flux standards and laboratory standards. Aims. The StarDICE experiment aims to establish a five-stage metrology chain from NIST photodiodes to stars, with a targeted accuracy of 1 mmag in griz colors. We present the first two stages, resulting in the calibration transfer from NIST photodiodes to a demonstration 150 mpixel CMOS sensor (Sony IMX411ALR as implemented in the QHY411M camera by QHYCCD). As a side-product, we provide full characterization of this camera, which we believe to be of potential interest in astronomical imaging and photometry and specifically discuss its use in the context of gravitational wave optical follow-up. Methods. A fully automated spectrophotometric bench was built to perform the calibration transfer. The sensor readout electronics was studied using thousands of flat-field images from which we derived stability, high-resolution photon transfer curves (PTC), and estimates of the individual pixel gain. The sensor quantum efficiency (QE) was then measured relatively to a NIST-calibrated photodiode, in a well-defined monochromatic light beam from 375 to 1078 nm. Last, flat-field scans at 16 different wavelengths were used to build maps of the sensor response, fully characterizing the sensor for absolute photometric measurements. Results. We demonstrated statistical uncertainty on QE below 0.001 e/γ between 387 nm and 950 nm, the range being limited by the sensitivity decline of the tested sensor in the infrared. Systematic uncertainties in the bench optics are controlled at the level of 1 × 10−3 e/γ. Linearity issues are detected at the level of 5 × 10−3 e/γ for the tested camera and require further developments to fully correct. Uncertainty in the overall normalization of the QE curve (without relevance for the cosmology, but relevant to evaluate the performance of the camera itself) is 1%. Regarding the camera we demonstrate stability in steady state conditions at the level of 32.5 ppm. Homogeneity in the response is below 1% RMS across the entire sensor area. Quantum efficiency stays above 50% in most of the visible range, peaking well above 80% between 440 nm and 570 nm. Differential nonlinearities at the level of 1% are detected. A simple two-parameter model is proposed to mitigate the effect and found to adequately correct the shape of the PTC on half the numerical scale. No significant deviations from integral linearity were detected in our limited test. Static and dynamical correlations between pixels are low, making the device likely suitable for galaxy shape measurements.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3