Measuring the orbit shrinkage rate of hot Jupiters due to tides

Author:

Rosário N. M.ORCID,Barros S. C. C.,Demangeon O. D. S.,Santos N. C.

Abstract

Context. A tidal interaction between a star and a close-in exoplanet leads to shrinkage of the planetary orbit and eventual tidal dis- ruption of the planet. Measuring the shrinkage of the orbits will allow for the tidal quality parameter of the star (Q) to be measured, which is an important parameter to obtain information about stellar interiors. Aims. We analyse data from the Transiting Exoplanet Survey Satellite (TESS) for two targets known to host close-in hot Jupiters, which have significant data available and are expected to have a fast decay: WASP-18 and WASP-19. We aim to measure the current limits on orbital period variation and provide new constrains on Q for our targets. Methods. We modelled the transit shape using all the available TESS observations and fitted the individual transit times of each tran- sit. We used previously published transit times together with our results to fit two models, a constant period model, and a quadratic orbital decay model, using Markov chain Monte Carlo (MCMC) algorithms. Results. We obtain new constrains on Q for both targets and improve the precision of the known planet parameters with the newest observations from TESS. We find period change rates of (−0.11 ± 0.21) × 10−10 for WASP-18b and (−0.35 ± 0.22) × 10−10 for WASP-19b and we do not find significant evidence of orbital decay in these targets. We obtain new lower limits for Q of (1.42 ± 0.34) × 107 in WASP-18 and (1.26 ± 0.10) × 106 in WASP-19, corresponding to upper limits of the orbital decay rate of −0.45 × 10−10 and −0.71 × 10−10, respectively, with a 95% confidence level. We compare our results with other relevant targets for tidal decay studies. Conclusions. We find that the orbital decay rate in both WASP-18b and WASP-19b appears to be smaller than the measured orbital decay of WASP-12b. We show that the minimum value of Q in WASP-18 is two orders of magnitude higher than that of WASP-12, while WASP-19 has a minimum value one order of magnitude higher, which is consistent with other similar targets. Further observations are required to constrain the orbital decay of WASP-18 and WASP-19.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3