Imaging-spectroscopy of a band-split type II solar radio burst with the Murchison Widefield Array

Author:

Bhunia ShilpiORCID,Carley Eoin P.,Oberoi DivyaORCID,Gallagher Peter T.ORCID

Abstract

Type II solar radio bursts are caused by magnetohydrodynamic (MHD) shocks driven by solar eruptive events such as coronal mass ejections (CMEs). Often, both fundamental and harmonic bands of type II bursts are split into sub-bands, which are generally believed to be coming from upstream and downstream regions of the shock; however, this explanation remains unconfirmed. Here, we present combined results from imaging analyses of type II radio burst band splitting and other fine structures observed by the Murchison Widefield Array (MWA) and extreme ultraviolet observations from Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) on 28 September 2014. The MWA provides imaging-spectroscopy in the range 80−300 MHz with a time resolution of 0.5 s and frequency resolution of 40 kHz. Our analysis shows that the burst was caused by a piston-driven shock with a driver speed of ∼112 km s−1 and shock speed of ∼580 km s−1. We provide rare evidence that band splitting is caused by emission from multiple parts of the shock (as opposed to the upstream–downstream hypothesis). We also examine the small-scale motion of type II fine structure radio sources in MWA images, and suggest that this motion may arise because of radio propagation effects from coronal turbulence, and is not due to the physical motion of the shock location. We present a novel technique that uses imaging spectroscopy to directly determine the effective length scale of turbulent density perturbations, which is found to be 1−2 Mm. The study of the systematic and small-scale motion of fine structures may therefore provide a measure of turbulence in different regions of the shock and corona.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3