Implications of multiwavelength spectrum on cosmic-ray acceleration in blazar TXS 0506+056

Author:

Das SaikatORCID,Gupta NayantaraORCID,Razzaque SoeburORCID

Abstract

Context. The MAGIC collaboration has recently analyzed data from a long-term multiwavelength campaign of the γ-ray blazar TXS 0506+056. In December 2018 it was flaring in the very high-energy (VHE; E >  100 GeV) γ-ray band, but no simultaneous neutrino event was detected. Aims. We modeled the observed spectral energy distribution (SED) using a one-zone leptohadronic emission. Methods. We estimated the neutrino flux through the restriction from the observed X-ray flux on the secondary radiation due to the hadronic cascade, initiated by protons with energy Ep ≲ 0.1 EeV. We assumed that ultra-high-energy cosmic rays (UHECRs; E ≳ 0.1 EeV), with the same slope and normalization as the low-energy spectrum, are accelerated in the jet but escape efficiently. We propagate the UHE protons in a random turbulent extragalactic magnetic field (EGMF). Results. The leptonic emission from the jet dominates the GeV range, whereas the cascade emission from CR interactions in the jet contributes substantially to the X-ray and VHE range. The line-of-sight cosmogenic γ-rays from UHECRs produce a hardening in the VHE spectrum. Our model prediction for neutrinos from the jet is consistent with the 7.5-year flux limit by IceCube and shows no variability during the MAGIC campaign. Therefore, we infer that the correlation between GeV-TeV γ-rays and neutrino flare is minimal. The luminosity in CRs limits the cosmogenic γ-ray flux, which in turn bounds the RMS value of the EGMF to ≳10−5 nG. The cosmogenic neutrino flux is lower than the IceCube-Gen2 detection potential for 10 yr of observation. Conclusions. Very high-energy γ-ray variability should arise from increased activity inside the jet; thus, detecting steady flux at multi-TeV energies may indicate UHECR acceleration. Upcoming γ-ray imaging telescopes, such as the CTA, will be able to constrain the cosmogenic γ-ray component in the SED of TXS 0506+056.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3