Abstract
Context. Classical novae are eruptions on the surface of a white dwarf in a binary system. The material ejected from the white dwarf surface generally forms an axisymmetric shell of gas and dust around the system. The three-dimensional structure of these shells is difficult to untangle when viewed on the plane of the sky. In this work a geometrical model is developed to explain new observations of the 2015 nova V5668 Sagittarii.
Aim. We aim to better understand the early evolution of classical nova shells in the context of the relationship between polarisation, photometry, and spectroscopy in the optical regime. To understand the ionisation structure in terms of the nova shell morphology and estimate the emission distribution directly following the light curve’s dust-dip.
Methods. High-cadence optical polarimetry and spectroscopy observations of a nova are presented. The ejecta is modelled in terms of morpho-kinematics and photoionisation structure.
Results. Initially observational results are presented, including broadband polarimetry and spectroscopy of V5668 Sgr nova during eruption. Variability over these observations provides clues towards the evolving structure of the nova shell. The position angle of the shell is derived from polarimetry, which is attributed to scattering from small dust grains. Shocks in the nova outflow are suggested in the photometry and the effect of these on the nova shell are illustrated with various physical diagnostics. Changes in density and temperature as the super soft source phase of the nova began are discussed. Gas densities are found to be of the order of 109 cm−3 for the nova in its auroral phase. The blackbody temperature of the central stellar system is estimated to be around 2.2 × 105 K at times coincident with the super soft source turn-on. It was found that the blend around 4640 Å commonly called “nitrogen flaring” is more naturally explained as flaring of the O II multiplet (V1) from 4638–4696 Å, i.e. “oxygen flaring”.
Conclusions. V5668 Sgr (2015) was a remarkable nova of the DQ Her class. Changes in absolute polarimetric and spectroscopic multi-epoch observations lead to interpretations of physical characteristics of the nova’s evolving outflow. The high densities that were found early-on combined with knowledge of the system’s behaviour at other wavelengths and polarimetric measurements strongly suggest that the visual “cusps” are due to radiative shocks between fast and slow ejecta that destroy and create dust seed nuclei cyclically.
Funder
Irish Research Council for Science, Engineering and Technology
Subject
Space and Planetary Science,Astronomy and Astrophysics
Reference59 articles.
1. Anupama G. C.
2012, in
Astronomical Society of India Conf. Ser. 6, eds.
Prugniel P., &
Singh H. P., 143
2. Banerjee D. P. K.,
Srivastava M., &
Ashok N. M.
2015,
ATel, 7265
3. Near-infrared studies of the carbon monoxide and dust-forming Nova V5668 Sgr
4. A fully automated data reduction pipeline for the FRODOSpec integral field spectrograph
5. Basu B.,
Chattopadhyay T., &
Biswas S. N.
2010,
An Introduction to Astrophysics, 2nd edn.
(PHI Learning Pvt. Ltd.)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献