Dust in brown dwarfs and extra-solar planets

Author:

Lee E. K. H.ORCID,Blecic J.,Helling Ch.

Abstract

Context. The cloud formation process starts with the formation of seed particles, after which, surface chemical reactions grow or erode the cloud particles. If seed particles do not form, or are not available by another means, an atmosphere is unable to form a cloud complex and will remain cloud free. Aims. We aim to investigate which materials may form cloud condensation seeds in the gas temperature and pressure regimes (Tgas = 100–2000 K, pgas = 10−8–100 bar) expected to occur in planetary and brown dwarf atmospheres. Methods. We have applied modified classical nucleation theory which requires surface tensions and vapour pressure data for each solid species, which are taken from the literature. Input gas phase number densities are calculated assuming chemical equilibrium at solar metallicity. Results. We calculated the seed formation rates of TiO2[s] and SiO[s] and find that they efficiently nucleate at high temperatures of Tgas = 1000–1750 K. Cr[s], KCl[s] and NaCl[s] are found to efficiently nucleate across an intermediate temperature range of Tgas = 500–1000 K. We find CsCl[s] may serve as the seed particle for the water cloud layers in cool sub-stellar atmospheres. The nucleation rates of four low temperature ice species (Tgas = 100–250 K), H2O[s/l], NH3[s], H2S[s/l], and CH4[s], are also investigated for the coolest sub-stellar and planetary atmospheres. Conclusions. Our results suggest a possibly (Tgas, pgas) distributed hierarchy of seed particle formation regimes throughout the substellar and planetary atmospheric temperature-pressure space. With TiO2[s] providing seed particles for the most refractory cloud formation species (e.g. Al2O3[s], Fe[s], MgSiO3[s], Mg2SiO4[s]), Cr[s] providing the seed particles for MnS[s], Na2S[s], and ZnS[s] sulfides, and K/Na/Rb/Cs/NH4-Cl binding solid species providing the seed particles for H2O[s/l] and NH4-H2PO4/SH[s] clouds. A detached, high-altitude aerosol layer may form in some sub-stellar atmospheres from the nucleation process, dependent on the upper atmosphere temperature, pressure and availability of volatile elements. In order to improve the accuracy of the nucleation rate calculation, further research into the small cluster thermochemical data for each cloud species is warranted. The validity of these seed particle scenarios will be tested by applying it to more complete cloud models in the future.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3