Sparse Lens Inversion Technique (SLIT): lens and source separability from linear inversion of the source reconstruction problem

Author:

Joseph R.ORCID,Courbin F.,Starck J.-L.,Birrer S.

Abstract

Strong gravitational lensing offers a wealth of astrophysical information on the background source it affects, provided the lensed source can be reconstructed as if it was seen in the absence of lensing. In the present work, we illustrate how sparse optimisation can address the problem. As a first step towards a full free-form-lens-modelling technique, we consider linear inversion of the lensed source under sparse regularisation and joint deblending from the lens light profile. The method is based on morphological component analysis, assuming a known mass model. We show with numerical experiments that representing the lens and source light using an undecimated wavelet basis allows us to reconstruct the source and to separate it from the foreground lens at the same time. Both the source and lens light have a non-analytic form, allowing for the flexibility needed in the inversion to represent arbitrarily small and complex luminous structures in the lens and source. In addition, sparse regularisation avoids over-fitting the data and does not require the use of an adaptive mesh or pixel grid. As a consequence, our reconstructed sources can be represented on a grid of very small pixels. Sparse regularisation in the wavelet domain also allows for automated computation of the regularisation parameter, thus minimising the impact of the arbitrary choice of initial parameters. Our inversion technique for a fixed mass distribution can be incorporated into future lens-modelling techniques iterating over the lens mass parameters.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3