Chemistry of a newly detected circumbinary disk in Ophiuchus

Author:

Artur de la Villarmois ElizabethORCID,Kristensen Lars E.ORCID,Jørgensen Jes K.ORCID,Bergin Edwin A.,Brinch Christian,Frimann Søren,Harsono Daniel,Sakai Nami,Yamamoto Satoshi

Abstract

Context. Astronomers recently started discovering exoplanets around binary systems. Therefore, understanding the formation and evolution of circumbinary disks and their environment is crucial for a complete scenario of planet formation. Aims. The purpose of this paper is to present the detection of a circumbinary disk around the system Oph-IRS67 and analyse its chemical and physical structure. Methods. We present high-angular-resolution (0.′′4, ~60 AU) observations of C17O, H13CO+, C34S, SO2, C2H and c−C3H2 molecular transitions with the Atacama Large Millimeter/submillimeter Array (ALMA) at wavelengths of 0.8 mm. The spectrally and spatially resolved maps reveal the kinematics of the circumbinary disk as well as its chemistry. Molecular abundances are estimated using the non-local thermodynamic equilibrium (LTE) radiative-transfer tool RADEX. Results. The continuum emission agrees with the position of Oph-IRS67 A and B, and reveals the presence of a circumbinary disk around the two sources. The circumbinary disk has a diameter of ~620 AU and is well traced by C17O and H13CO+ emission. Two further molecular species, C2H and c−C3H2, trace a higher-density region which is spatially offset from the sources (~430 AU). Finally, SO2 shows compact and broad emission around only one of the sources, Oph-IRS67 B. The molecular transitions which trace the circumbinary disk are consistent with a Keplerian profile on smaller disk scales (≲200 AU) and an infalling profile for larger envelope scales (≳200 AU). The Keplerian fit leads to an enclosed mass of 2.2 M. Inferred CO abundances with respect to H2 are comparable to the canonical ISM value of 2.7 × 10−4, reflecting that freeze-out of CO in the disk midplane is not significant. Conclusions. Molecular emission and kinematic studies prove the existence and first detection of the circumbinary disk associated with the system Oph-IRS67. The high-density region shows a different chemistry than the disk, being enriched in carbon chain molecules. The lack of methanol emission agrees with the scenario where the extended disk dominates the mass budget in the innermost regions of the protostellar envelope, generating a flat density profile where less material is exposed to high temperatures, and thus, complex organic molecules would be associated with lower column densities. Finally, Oph-IRS67 is a promising candidate for proper motion studies and the detection of both circumstellar disks with higher-angular-resolution observations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3