MOND simulation suggests an origin for some peculiarities in the Local Group

Author:

Bílek M.ORCID,Thies I.,Kroupa P.ORCID,Famaey B.

Abstract

Context. The Milky Way (MW) and Andromeda (M 31) galaxies possess rotating planes of satellites. The formation of these planes has not been explained satisfactorily so far. It has been suggested that the MW and M 31 satellites are ancient tidal dwarf galaxies; this might explain their configuration. This suggestion gained support by an analytic backward-calculation of the relative MW–M 31 orbit in the MOND modified dynamics paradigm. The result implied that the galaxies experienced a close flyby 7–11 Gyr ago. Aims. Here we explore the Local Group history in MOND in more detail using a simplified first-ever self-consistent simulation. We describe the features induced by the encounter in the simulation and identify possible real counterparts of these features. Methods. The initial conditions were set to eventually roughly reproduce the observed MW and M 31 masses, effective radii, separation, relative velocity, and disk inclinations. We used the publicly available adaptive-mesh-refinement code Phantom of RAMSES. Results. Matter was transferred from the MW to M 31 along a tidal tail in the simulation. The encounter induced the formation of several structures resembling the peculiarities of the Local Group. Most notably are that 1) a rotating planar structure formed around M 31 from the transferred material. It had a size similar to the observed satellite plane and was oriented edge-on to the simulated MW, just as the real plane. 2) The same structure also resembled the tidal features observed around M 31 by its size and morphology. 3) A warp in the MW developed with an amplitude and orientation similar to that observed. 4) A cloud of particles formed around the simulated MW, with the extent of the actual MW satellite system. The encounter did not end by merging in a Hubble time. The simulated stellar disks also thickened as a result of the encounter. Conclusions. The simulation demonstrated that MOND might explain many peculiarities of the Local Group; this needs to be verified with additional simulations. The simulation moreover showed that tidal features observed in galaxies, usually interpreted as merger remnants, could have been formed by matter exchange during non-merging galactic flybys in some cases.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A co-rotating gas and satellite structure around the interacting galaxy pair NGC 4490/85;Monthly Notices of the Royal Astronomical Society;2024-01-17

2. Strong constraints on the gravitational law from Gaia DR3 wide binaries;Monthly Notices of the Royal Astronomical Society;2023-11-03

3. Examining the relationship between the bulge-to-total stellar mass ratio and dwarf galaxy count in the context of ΛCDM;Astronomy & Astrophysics;2023-10

4. Dear Magellanic Clouds, welcome back!;Monthly Notices of the Royal Astronomical Society;2023-08-31

5. A Rotating Satellite Plane around Milky Way–like Galaxy from the TNG50 Simulation;The Astrophysical Journal;2023-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3