Kinetic temperature of massive star-forming molecular clumps measured with formaldehyde

Author:

Tang X. D.ORCID,Henkel C.,Menten K. M.,Wyrowski F.,Brinkmann N.,Zheng X. W.,Gong Y.,Lin Y. X.,Esimbek J.,Zhou J. J.,Yuan Y.,Li D. L.,He Y. X.

Abstract

We mapped the kinetic temperature structure of the Orion molecular cloud 1 (OMC-1) with para-H2CO (JKaKc = 303–202, 322–221, and 321–220) using the APEX 12 m telescope. This is compared with the temperatures derived from the ratio of the NH3 (2, 2)/(1, 1) inversion lines and the dust emission. Using the RADEX non-LTE model, we derive the gas kinetic temperature modeling the measured averaged line ratios of para-H2CO 322–221/303–202 and 321–220/303–202. The gas kinetic temperatures derived from the para-H2CO line ratios are warm, ranging from 30 to >200 K with an average of 62 ± 2 K at a spatial density of 105 cm-3. These temperatures are higher than those obtained from NH3 (2, 2)/(1, 1) and CH3CCH (6–5) in the OMC-1 region. The gas kinetic temperatures derived from para-H2CO agree with those obtained from warm dust components measured in the mid infrared (MIR), which indicates that the para-H2CO (3–2) ratios trace dense and warm gas. The cold dust components measured in the far infrared (FIR) are consistent with those measured with NH3 (2, 2)/(1, 1) and the CH3CCH (6–5) line series. With dust at MIR wavelengths and para-H2CO (3–2) on one side, and dust at FIR wavelengths, NH3 (2, 2)/(1, 1), and CH3CCH (6–5) on the other, dust and gas temperatures appear to be equivalent in the dense gas (n(H2) ≳ 104 cm-3) of the OMC-1 region, but provide a bimodal distribution, one more directly related to star formation than the other. The non-thermal velocity dispersions of para-H2CO are positively correlated with the gas kinetic temperatures in regions of strong non-thermal motion (Mach number ≳ 2.5) of the OMC-1, implying that the higher temperature traced by para-H2CO is related to turbulence on a ~0.06 pc scale. Combining the temperature measurements with para-H2CO and NH3 (2, 2)/(1, 1) line ratios, we find direct evidence for the dense gas along the northern part of the OMC-1 10 km s-1 filament heated by radiation from the central Orion nebula.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3