Metal abundances in hot white dwarfs with signatures of a superionized wind

Author:

Werner K.ORCID,Rauch T.,Kruk J. W.

Abstract

About a dozen hot white dwarfs with effective temperatures Teff = 65 000−120 000 K exhibit unusual absorption features in their optical spectra. These objects were tentatively identified as Rydberg lines of ultra-high excited metals in ionization stages v–x, indicating line formation in a dense environment with temperatures near 106 K. Since some features show blueward extensions, it was argued that they stem from a superionized wind. A unique assignment of the lines to particular elements is not possible, although they probably stem from C, N, O, and Ne. To further investigate this phenomenon, we analyzed the ultraviolet spectra available from only three stars of this group; that is, two helium-rich white dwarfs, HE 0504–2408 and HS 0713+3958 with spectral type DO, and a hydrogen-rich white dwarf, HS 2115+1148 with spectral type DAO. We identified light metals (C, N, O, Si, P, and S) with generally subsolar abundances and heavy elements from the iron group (Cr, Mn, Fe, Co, Ni) with solar or oversolar abundance. The abundance patterns are not unusual for hot WDs and can be interpreted as the result of gravitational settling and radiative levitation of elements. As to the origin of the ultra-high ionized metals lines, we discuss the possible presence of a multicomponent radiatively driven wind that is frictionally heated.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference64 articles.

1. The Limiting Effects of Dust in Brown Dwarf Model Atmospheres

2. Aller, L. H., Appenzeller, I., Baschek, B., et al. 1982, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology − New Series Gruppe/Group 6 Astronomy and Astrophysics, Vol. 2: Schaifers/Voigt: Astronomy and Astrophysics/Astronomie und Astrophysik Stars and Star Clusters/Sterne und Sternhaufen

3. NEW EVOLUTIONARY SEQUENCES FOR HOT H-DEFICIENT WHITE DWARFS ON THE BASIS OF A FULL ACCOUNT OF PROGENITOR EVOLUTION

4. Line blanketing without local thermodynamic equilibrium. II - A solar-type model in radiative equilibrium

5. The Chemical Composition of the Sun

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3