The environment of the wind–wind collision region of η Carinae

Author:

Panagiotou C.,Walter R.

Abstract

Context. η Carinae is a colliding wind binary hosting two of the most massive stars and featuring the strongest wind collision mechanical luminosity. The wind collision region of this system is detected in X-rays and γ-rays and offers a unique laboratory for the study of particle acceleration and wind magneto-hydrodynamics. Aim. Our main goal is to use X-ray observations of η Carinae around periastron to constrain the wind collision zone geometry and understand the reasons for its variability. Methods. We analysed 10 Nuclear Spectroscopic Telescope Array (NuSTAR) observations, which were obtained around the 2014 periastron. The NuSTAR array monitored the source from 3 to 30 keV, which allowed us to grasp the continuum and absorption parameters with very good accuracy. We were able to identify several physical components and probe their variability. Results. The X-ray flux varied in a similar way as observed during previous periastrons and largely as expected if generated in the wind collision region. The flux detected within ~10 days of periastron is lower than expected, suggesting a partial disruption of the central region of the wind collision zone. The Fe Kα line is likely broadened by the electrons heated along the complex shock fronts. The variability of its equivalent width indicates that the fluorescence region has a complex geometry and that the source obscuration varies quickly with the line of sight.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Colliding winds in WR21 and WR31 – I. The X-ray view;Monthly Notices of the Royal Astronomical Society;2023-09-06

2. Search for non-thermal X-ray emission in the colliding wind binary Cygnus OB2 #8A;Astronomy & Astrophysics;2020-04

3. Three-dimensional simulations of clump formation in stellar wind collisions;Monthly Notices of the Royal Astronomical Society;2020-01-14

4. Overview of non-transient γ-ray binaries and prospects for the Cherenkov Telescope Array;Astronomy & Astrophysics;2019-11

5. η Carinae: Particle acceleration and multimessenger aspects;Astronomische Nachrichten;2019-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3