Gaia Data Release 2

Author:

,Katz D.,Antoja T.,Romero-Gómez M.,Drimmel R.,Reylé C.,Seabroke G. M.,Soubiran C.,Babusiaux C.,Di Matteo P.,Figueras F.,Poggio E.,Robin A. C.,Evans D. W.,Brown A. G. A.,Vallenari A.,Prusti T.,de Bruijne J. H. J.,Bailer-Jones C. A. L.,Biermann M.,Eyer L.,Jansen F.,Jordi C.,Klioner S. A.,Lammers U.,Lindegren L.,Luri X.,Mignard F.,Panem C.,Pourbaix D.,Randich S.,Sartoretti P.,Siddiqui H. I.,van Leeuwen F.,Walton N. A.,Arenou F.,Bastian U.,Cropper M.,Lattanzi M. G.,Bakker J.,Cacciari C.,Casta n J.,Chaoul L.,Cheek N.,De Angeli F.,Fabricius C.,Guerra R.,Holl B.,Masana E.,Messineo R.,Mowlavi N.,Nienartowicz K.,Panuzzo P.,Portell J.,Riello M.,Tanga P.,Thévenin F.,Gracia-Abril G.,Comoretto G.,Garcia-Reinaldos M.,Teyssier D.,Altmann M.,Andrae R.,Audard M.,Bellas-Velidis I.,Benson K.,Berthier J.,Blomme R.,Burgess P.,Busso G.,Carry B.,Cellino A.,Clementini G.,Clotet M.,Creevey O.,Davidson M.,De Ridder J.,Delchambre L.,Dell’Oro A.,Ducourant C.,Fernández-Hernández J.,Fouesneau M.,Frémat Y.,Galluccio L.,García-Torres M.,González-Núñez J.,González-Vidal J. J.,Gosset E.,Guy L. P.,Halbwachs J.-L.,Hambly N. C.,Harrison D. L.,Hernández J.,Hestroffer D.,Hodgkin S. T.,Hutton A.,Jasniewicz G.,Jean-Antoine-Piccolo A.,Jordan S.,Korn A. J.,Krone-Martins A.,Lanzafame A. C.,Lebzelter T.,Löffler W.,Manteiga M.,Marrese P. M.,Martín-Fleitas J. M.,Moitinho A.,Mora A.,Muinonen K.,Osinde J.,Pancino E.,Pauwels T.,Petit J.-M.,Recio-Blanco A.,Richards P. J.,Rimoldini L.,Sarro L. M.,Siopis C.,Smith M.,Sozzetti A.,Süveges M.,Torra J.,van Reeven W.,Abbas U.,Abreu Aramburu A.,Accart S.,Aerts C.,Altavilla G.,Álvarez M. A.,Alvarez R.,Alves J.,Anderson R. I.,Andrei A. H.,Anglada Varela E.,Antiche E.,Arcay B.,Astraatmadja T. L.,Bach N.,Baker S. G.,Balaguer-Núñez L.,Balm P.,Barache C.,Barata C.,Barbato D.,Barblan F.,Barklem P. S.,Barrado D.,Barros M.,Barstow M. A.,Bartholomé Muñoz L.,Bassilana J.-L.,Becciani U.,Bellazzini M.,Berihuete A.,Bertone S.,Bianchi L.,Bienaymé O.,Blanco-Cuaresma S.,Boch T.,Boeche C.,Bombrun A.,Borrachero R.,Bossini D.,Bouquillon S.,Bourda G.,Bragaglia A.,Bramante L.,Breddels M. A.,Bressan A.,Brouillet N.,Brüsemeister T.,Brugaletta E.,Bucciarelli B.,Burlacu A.,Busonero D.,Butkevich A. G.,Buzzi R.,Caffau E.,Cancelliere R.,Cannizzaro G.,Cantat-Gaudin T.,Carballo R.,Carlucci T.,Carrasco J. M.,Casamiquela L.,Castellani M.,Castro-Ginard A.,Charlot P.,Chemin L.,Chiavassa A.,Cocozza G.,Costigan G.,Cowell S.,Crifo F.,Crosta M.,Crowley C.,Cuypers† J.,Dafonte C.,Damerdji Y.,Dapergolas A.,David P.,David M.,de Laverny P.,De Luise F.,De March R.,de Souza R.,de Torres A.,Debosscher J.,del Pozo E.,Delbo M.,Delgado A.,Delgado H. E.,Diakite S.,Diener C.,Distefano E.,Dolding C.,Drazinos P.,Durán J.,Edvardsson B.,Enke H.,Eriksson K.,Esquej P.,Eynard Bontemps G.,Fabre C.,Fabrizio M.,Faigler S.,Falc a A. J.,Farràs Casas M.,Federici L.,Fedorets G.,Fernique P.,Filippi F.,Findeisen K.,Fonti A.,Fraile E.,Fraser M.,Frézouls B.,Gai M.,Galleti S.,Garabato D.,García-Sedano F.,Garofalo A.,Garralda N.,Gavel A.,Gavras P.,Gerssen J.,Geyer R.,Giacobbe P.,Gilmore G.,Girona S.,Giuffrida G.,Glass F.,Gomes M.,Granvik M.,Gueguen A.,Guerrier A.,Guiraud J.,Gutié R.,Haigron R.,Hatzidimitriou D.,Hauser M.,Haywood M.,Heiter U.,Helmi A.,Heu J.,Hilger T.,Hobbs D.,Hofmann W.,Holland G.,Huckle H. E.,Hypki A.,Icardi V.,Janßen K.,Jevardat de Fombelle G.,Jonker P. G.,Juhász Á. L.,Julbe F.,Karampelas A.,Kewley A.,Klar J.,Kochoska A.,Kohley R.,Kolenberg K.,Kontizas M.,Kontizas E.,Koposov S. E.,Kordopatis G.,Kostrzewa-Rutkowska Z.,Koubsky P.,Lambert S.,Lanza A. F.,Lasne Y.,Lavigne J.-B.,Le Fustec Y.,Le Poncin-Lafitte C.,Lebreton Y.,Leccia S.,Leclerc N.,Lecoeur-Taibi I.,Lenhardt H.,Leroux F.,Liao S.,Licata E.,Lindstrøm H. E. P.,Lister T. A.,Livanou E.,Lobel A.,López M.,Managau S.,Mann R. G.,Mantelet G.,Marchal O.,Marchant J. M.,Marconi M.,Marinoni S.,Marschalkó G.,Marshall D. J.,Martino M.,Marton G.,Mary N.,Massari D.,Matijevič G.,Mazeh T.,McMillan P. J.,Messina S.,Michalik D.,Millar N. R.,Molina D.,Molinaro R.,Molnár L.,Montegriffo P.,Mor R.,Morbidelli R.,Morel T.,Morris D.,Mulone A. F.,Muraveva T.,Musella I.,Nelemans G.,Nicastro L.,Noval L.,O’Mullane W.,Ordénovic C.,Ordóñez-Blanco D.,Osborne P.,Pagani C.,Pagano I.,Pailler F.,Palacin H.,Palaversa L.,Panahi A.,Pawlak M.,Piersimoni A. M.,Pineau F.-X.,Plachy E.,Plum G.,Poujoulet E.,Prša A.,Pulone L.,Racero E.,Ragaini S.,Rambaux N.,Ramos-Lerate M.,Regibo S.,Riclet F.,Ripepi V.,Riva A.,Rivard A.,Rixon G.,Roegiers T.,Roelens M.,Rowell N.,Royer F.,Ruiz-Dern L.,Sadowski G.,Sagristà Sellés T.,Sahlmann J.,Salgado J.,Salguero E.,Sanna N.,Santana-Ros T.,Sarasso M.,Savietto H.,Schultheis M.,Sciacca E.,Segol M.,Segovia J. C.,Ségransan D.,Shih I-C.,Siltala L.,Silva A. F.,Smart R. L.,Smith K. W.,Solano E.,Solitro F.,Sordo R.,Soria Nieto S.,Souchay J.,Spagna A.,Spoto F.,Stampa U.,Steele I. A.,Steidelmüller H.,Stephenson C. A.,Stoev H.,Suess F. F.,Surdej J.,Szabados L.,Szegedi-Elek E.,Tapiador D.,Taris F.,Tauran G.,Taylor M. B.,Teixeira R.,Terrett D.,Teyssandier P.,Thuillot W.,Titarenko A.,Torra Clotet F.,Turon C.,Ulla A.,Utrilla E.,Uzzi S.,Vaillant M.,Valentini G.,Valette V.,van Elteren A.,Van Hemelryck E.,van Leeuwen M.,Vaschetto M.,Vecchiato A.,Veljanoski J.,Viala Y.,Vicente D.,Vogt S.,von Essen C.,Voss H.,Votruba V.,Voutsinas S.,Walmsley G.,Weiler M.,Wertz O.,Wevers T.,Wyrzykowski Ł.,Yoldas A.,Žerjal M.,Ziaeepour H.,Zorec J.,Zschocke S.,Zucker S.,Zurbach C.,Zwitter T.

Abstract

Context. The second Gaia data release (Gaia DR2) contains high-precision positions, parallaxes, and proper motions for 1.3 billion sources as well as line-of-sight velocities for 7.2 million stars brighter than GRVS = 12 mag. Both samples provide a full sky coverage. Aims. To illustrate the potential of Gaia DR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. Methods. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes (σϖϖ ≤ 20%), and precise Galactic cylindrical velocities (median uncertainties of 0.9-1.4 km s-1 and 20% of the stars with uncertainties smaller than 1 km s-1 on all three components). From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from ~5 kpc to ~13 kpc from the Galactic centre and up to 2 kpc above and below the plane. We also study the distribution of 0.3 million solar neighbourhood stars (r < 200 pc), with median velocity uncertainties of 0.4 km s-1, in velocity space and use the full sample to examine how the over-densities evolve in more distant regions. Results. Gaia DR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the UV plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. Conclusions. Gaia DR2 provides the largest existing full 6D phase-space coordinates catalogue. It also vastly increases the number of available distances and transverse velocities with respect to Gaia DR1. Gaia DR2 offers a great wealth of information on the Milky Way and reveals clear non-axisymmetric kinematic signatures within the Galactic disc, for instance. It is now up to the astronomical community to explore its full potential.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 345 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of Black Hole Kick Velocity on Microlensing Distributions;The Astrophysical Journal;2024-09-01

2. How Rare Are TESS Free-floating Planets?;The Astrophysical Journal Letters;2024-08-26

3. The tangled warp of the Milky Way;Astronomy & Astrophysics;2024-07-30

4. Linear operator theory of phase mixing;Monthly Notices of the Royal Astronomical Society;2024-07-23

5. Galactic structure from binary pulsar accelerations: Beyond smooth models;Physical Review D;2024-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3