From solar to stellar flare characteristics

Author:

Herbst KonstantinORCID,Papaioannou Athanasios,Banjac Saša,Heber Bernd

Abstract

Context. The connection between solar energetic proton events and X-ray flares has been the focus of many studies over the past 13 yr. In the course of these investigations several peak size distribution functions based on Geostationary Operational Environmental Satellite (GOES) measurements of both quantities have been developed. In more recent studies one of these functions has been used to estimate the stellar proton fluence around the M-dwarf star AD Leonis. However, a comparison of the existing peak size distribution functions reveals strong discrepancies with respect to each other. Aims. The aim of this paper is to derive a new peak size distribution function that can be utilized to give a more realistic estimate of the stellar proton flux of G-, K-, and M-dwarf stars. Methods. By updating and extending the GOES-based peak size distribution down to B-class X-ray flare intensities with the help of SphinX data from the solar minimum conditions of 2009 and newly derived GOES data between 1975 and 2005, we developed a new power-law peak size distribution function for solar proton fluxes (E >  10 MeV). However, its resulting slope differs from values reported in the literature. Therefore, we also developed a double-power-law peak size distribution function. An extension to much higher X-ray flare intensities (10−1) W m−2 and above, for the first time, results in an approximation of best- and worst-case scenarios of the stellar proton flux around G-, K-, and M-dwarf stars. Results. Investigating the impact of the newly developed peak size distribution function for G-, K-, and M-dwarf star flare intensities we show that in the worst-case scenario previous studies may underestimate the stellar proton flux by roughly one to five orders of magnitude.

Funder

Deutsche Forschungsgemeinschaft

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3