Medium-resolution integral-field spectroscopy for high-contrast exoplanet imaging

Author:

Hoeijmakers H. J.ORCID,Schwarz H.,Snellen I. A. G.,de Kok R. J.,Bonnefoy M.,Chauvin G.,Lagrange A. M.,Girard J. H.

Abstract

Context. Angular differential imaging (ADI) and spectral differential imaging (SDI) are well-established high-contrast imaging techniques, but their application is challenging for companions at small angular separations from their host stars. Aims. The aim of this paper is to investigate to what extent adaptive-optics assisted, medium-resolution (R ~ 5000) integral field spectrographs (IFS) can be used to directly detect the absorption of molecular species in the spectra of planets and substellar companions when these are not present in the spectrum of the star. Methods. We analysed archival data of the β Pictoris system taken with the SINFONI integral field spectrograph located at ESO’s Very Large Telescope, originally taken to image β Pictoris b using ADI techniques. At each spatial position in the field, a scaled instance of the stellar spectrum is subtracted from the data after which the residuals are cross-correlated with model spectra. The cross-correlation co-adds the individual absorption lines of the planet emission spectrum constructively, while this is not the case for (residual) telluric and stellar features. Results. Cross-correlation with CO and H2O models results in significant detections of β Pictoris b with signal-to-noise ratios (S/Ns) of 13.7 and 16.4 respectively. Correlation with a T = 1700 K BT-Settl model provides a detection with an S/N of 22.8. This in contrast to application of ADI, which barely reveals the planet. While the adaptive optics system only achieved modest Strehl ratios of 19–27% leading to a raw contrast of 1:240 at the planet position, cross-correlation achieves a 3σ contrast limit of 2.7 × 10−5 in this 2.5 hr data set, a factor ~40 below the raw noise level at an angular distance of 0.36′′ from the star. Conclusions. Adaptive-optics assisted, medium-resolution IFS, such as SINFONI on the VLT and OSIRIS on the Keck Telescope, can be used for high-contrast imaging utilizing cross-correlation techniques for planets that are close to their star and embedded in speckle noise. We refer to this method as molecule mapping, and advocate its application to observations with future medium resolution instruments, in particular ERIS on the VLT, HARMONI on the ELT and NIRSpec, and MIRI on the JWST.

Funder

European Research Council

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Association Nationale de la Recherche et de la Technologie

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference68 articles.

1. Allard F., Homeier D., & Freytag B. 2011, in 16th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, eds. Johns-Krull C., Browning M. K., & West A. A., ASP Conf. Ser., 448, 91

2. The design of ERIS for the VLT

3. Dynamical modeling of large scale asymmetries in the β Picto ris dust disk

4. Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458

5. SIMULTANEOUS DETECTION OF WATER, METHANE, AND CARBON MONOXIDE IN THE ATMOSPHERE OF EXOPLANET HR 8799 b

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3