Spatially resolved origin of millimeter-wave linear polarization in the nuclear region of 3C 84

Author:

Kim J.-Y.ORCID,Krichbaum T. P.ORCID,Marscher A. P.,Jorstad S. G.,Agudo I.ORCID,Thum C.,Hodgson J. A.,MacDonald N. R.,Ros E.ORCID,Lu R.-S.,Bremer M.,de Vicente P.,Lindqvist M.,Trippe S.,Zensus J. A.

Abstract

We report results from a deep polarization imaging of the nearby radio galaxy 3C 84 (NGC 1275). The source was observed with the Global Millimeter VLBI Array (GMVA) at 86 GHz at an ultrahigh angular resolution of 50 μas (corresponding to ∼200Rs). We also add complementary multiwavelength data from the Very Long Baseline Array (VLBA; 15 and 43 GHz) and from the Atacama Large Millimeter/submillimeter Array (ALMA; 97.5, 233.0 and 343.5 GHz). At 86 GHz, we measured a fractional linear polarization of ∼2% in the VLBI core region. The polarization morphology suggests that the emission is associated with an underlying limb-brightened jet. The fractional linear polarization is lower at 43 and 15 GHz (∼0.3−0.7% and <0.1%, respectively). This suggests an increasing linear polarization degree toward shorter wavelengths on VLBI scales. We also obtain a large rotation measure (RM) of ∼105–6 rad m2 in the core at ≳43 GHz. Moreover, the VLBA 43 GHz observations show a variable RM in the VLBI core region during a small flare in 2015. Faraday depolarization and Faraday conversion in an inhomogeneous and mildly relativistic plasma could explain the observed linear polarization characteristics and the previously measured frequency dependence of the circular polarization. Our Faraday depolarization modeling suggests that the RM most likely originates from an external screen with a highly uniform RM distribution. To explain the large RM value, the uniform RM distribution and the RM variability, we suggest that the Faraday rotation is caused by a boundary layer in a transversely stratified jet. Based on the RM and the synchrotron spectrum of the core, we provide an estimate for the magnetic field strength and the electron density of the jet plasma.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3