First detection of bromine and antimony in hot stars

Author:

Werner K.ORCID,Rauch T.,Knörzer M.,Kruk J. W.

Abstract

Bromine (Z = 35) and antimony (Z = 51) are extremely difficult to detect in stars. In very few instances, weak and mostly uncertain identifications of Br I, Br II, and Sb II in relatively cool, chemically peculiar stars were successful. Adopted solar abundance values rely on meteoritic determinations. Here, we announce the first identification of these species in far-ultraviolet spectra of hot stars (with effective temperatures of 49 500–70 000 K), namely in helium-rich (spectral type DO) white dwarfs. We identify the Br VI resonance line at 945.96 Å. A previous claim of Br detection based on this line is incorrect because its wavelength position is inaccurate by about 7 Å in atomic databases. Taking advantage of precise laboratory measurements, we identify this line as well as two other, subordinate Br VI lines. Antimony is detected by the Sb V resonance doublet at 1104.23/1225.98 Å as well as two subordinate Sb VI lines. A model-atmosphere analysis reveals strongly oversolar Br and Sb abundances that are caused by radiative-levitation dominated atomic diffusion.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3