Gaia Data Release 2

Author:

Luri X.ORCID,Brown A. G. A.ORCID,Sarro L. M.,Arenou F.,Bailer-Jones C. A. L.,Castro-Ginard A.ORCID,de Bruijne J.,Prusti T.,Babusiaux C.,Delgado H. E.ORCID

Abstract

Context. The second Gaia data release (Gaia DR2) provides precise five-parameter astrometric data (positions, proper motions, and parallaxes) for an unprecedented number of sources (more than 1.3 billion, mostly stars). This new wealth of data will enable the undertaking of statistical analysis of many astrophysical problems that were previously infeasible for lack of reliable astrometry, and in particular because of the lack of parallaxes. However, the use of this wealth of astrometric data comes with a specific challenge: how can the astrophysical parameters of interest be properly inferred from these data? Aims. The main focus of this paper, but not the only focus, is the issue of the estimation of distances from parallaxes, possibly combined with other information. We start with a critical review of the methods traditionally used to obtain distances from parallaxes and their shortcomings. Then we provide guidelines on how to use parallaxes more efficiently to estimate distances by using Bayesian methods. In particular we also show that negative parallaxes, or parallaxes with relatively large uncertainties still contain valuable information. Finally, we provide examples that show more generally how to use astrometric data for parameter estimation, including the combination of proper motions and parallaxes and the handling of covariances in the uncertainties. Methods. The paper contains examples based on simulated Gaia data to illustrate the problems and the solutions proposed. Furthermore, the developments and methods proposed in the paper are linked to a set of tutorials included in the Gaia archive documentation that provide practical examples and a good starting point for the application of the recommendations to actual problems. In all cases the source code for the analysis methods is provided. Results. Our main recommendation is to always treat the derivation of (astro-)physical parameters from astrometric data, in particular when parallaxes are involved, as an inference problem which should preferably be handled with a full Bayesian approach. Conclusions. Gaia will provide fundamental data for many fields of astronomy. Further data releases will provide more data, and more precise data. Nevertheless, to fully use the potential it will always be necessary to pay careful attention to the statistical treatment of parallaxes and proper motions. The purpose of this paper is to help astronomers find the correct approach.

Funder

Ministerio de Economia de España

Deutsches Zentrum für Luft- und Raumfahrt

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference38 articles.

1. Anderson L., Hogg D. W., Leistedt B., Price-Whelan A. M., & Bovy J. 2017, ArXiv e-prints [arXiv:1706.05055]

2. Arenou F., & Luri X. 1999, in Harmonizing Cosmic Distance Scales in a Post-HIPPARCOS Era, eds. Egret D., & Heck A., ASP Conf. Ser., 167, 13

3. Gaia Data Release 1

4. Gaia Data Release 2

5. ESTIMATING DISTANCES FROM PARALLAXES. II. PERFORMANCE OF BAYESIAN DISTANCE ESTIMATORS ON AGAIA-LIKE CATALOGUE

Cited by 596 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3