Solar wind dynamics around a comet

Author:

Behar E.ORCID,Tabone B.,Saillenfest M.,Henri P.,Deca J.,Lindkvist J.,Holmström M.,Nilsson H.

Abstract

Aims. We aim at analytically modelling the solar wind proton trajectories during their interaction with a partially ionised cometary atmosphere, not in terms of bulk properties of the flow but in terms of single particle dynamics. Methods. We first derive a generalised gyromotion, in which the electric field is reduced to its motional component. Steady-state is assumed, and simplified models of the cometary density and of the electron fluid are used to express the force experienced by individual solar wind protons during the interaction. Results. A three-dimensional (3D) analytical expression of the gyration of two interacting plasma beams is obtained. Applying it to a comet case, the force on protons is always perpendicular to their velocity and has an amplitude proportional to 1/r2. The solar wind deflection is obtained at any point in space. The resulting picture presents a caustic of intersecting trajectories, and a circular region is found that is completely free of particles. The particles do not lose any kinetic energy and this absence of deceleration, together with the solar wind deflection pattern and the presence of a solar wind ion cavity, is in good agreement with the general results of the Rosetta mission. Conclusions. The qualitative match between the model and the in situ data highlights how dominant the motional electric field is throughout most of the interaction region for the solar wind proton dynamics. The model provides a simple general kinetic description of how momentum is transferred between these two collisionless plasmas. It also shows the potential of this semi-analytical model for a systematic quantitative comparison to the data.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3