Streaming instability of multiple particle species in protoplanetary disks

Author:

Schaffer NoemiORCID,Yang Chao-Chin,Johansen Anders

Abstract

The radial drift and diffusion of dust particles in protoplanetary disks affect both the opacity and temperature of such disks, as well as the location and timing of planetesimal formation. In this paper, we present results of numerical simulations of particle-gas dynamics in protoplanetary disks that include dust grains with various size distributions. We have considered three scenarios in terms of particle size ranges, one where the Stokes number τs = 10−1−100, one where τs = 10−4−10−1, and finally one where τs = 10−3−100. Moreover, we considered both discrete and continuous distributions in particle size. In accordance with previous works we find in our multispecies simulations that different particle sizes interact via the gas and as a result their dynamics changes compared to the single-species case. The larger species trigger the streaming instability and create turbulence that drives the diffusion of the solid materials. We measured the radial equilibrium velocity of the system and find that the radial drift velocity of the large particles is reduced in the multispecies simulations and that the small particle species move on average outwards. We also varied the steepness of the size distribution, such that the exponent of the solid number density distribution, dNdaaq, is either q = 3 or q = 4. Overall, we find that the steepness of the size distribution and the discrete versus continuous approach have little impact on the results. The level of diffusion and drift rates are mainly dictated by the range of particle sizes. We measured the scale height of the particles and observe that small grains are stirred up well above the sedimented midplane layer where the large particles reside. Our measured diffusion and drift parameters can be used in coagulation models for planet formation as well as to understand relative mixing of the components of primitive meteorites (matrix, chondrules and CAIs) prior to inclusion in their parent bodies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3