Forecast of strongly lensed supernovae rates in the China Space Station Telescope surveys

Author:

Dong Jiang,Shu Yiping,Li Guoliang,Er XinzhongORCID,Hu Bin,Xu Youhua

Abstract

Strong gravitationally lensed supernovae (SNe) are a powerful probe for cosmology and stellar physics. The relative time delays between lensed SN images provide an independent way of measuring a fundamental cosmological parameter – the Hubble constant –, the value of which is currently under debate. The time delays also serve as a “time machine”, offering a unique opportunity to capture the extremely early phase of the SN explosion, which can be used to constrain the SN progenitor and explosion mechanism. Although there are only a handful of strongly lensed SN discoveries so far, which greatly hinders scientific applications, the sample size is expected to grow substantially with next-generation surveys. In this work, we investigate the capability of detecting strongly lensed SNe with the China Space Station Telescope (CSST), a two-meter space telescope to be launched around 2026. Through Monte Carlo simulations, we predict that CSST can detect 1008.53 and 51.78 strongly lensed SNe from its Wide Field Survey (WFS, covering 17 500 deg2) and Deep Field Survey (DFS, covering 400 deg2) over the course of ten years. In both surveys, about 35% of the events involve Type Ia SNe as the background sources. Our results suggest that the WFS and DFS of CSST, although not designed or optimized for discovering transients, can still make a great contribution to the strongly lensed SNe studies.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3