Ups and downs in the X-ray emission of the colliding wind binaries HD 168112 and HD 167971

Author:

Rauw G.ORCID,Blomme R.ORCID,Nazé Y.ORCID,Volpi D.,Fernandez-Vera S.

Abstract

Context. The long-period O-star binary system HD 168112 and the triple O-star system HD 167971 are well-known sources of non-thermal radio emission that arises from a colliding wind interaction. The wind-wind collisions in these systems should result in phase-dependent X-ray emissions. The presence of a population of relativistic electrons in the wind interaction zone could affect the properties of the X-ray emission and make it deviate from the behaviour expected for adiabatic shocks. Aims. We investigate the X-ray emission of these systems with the goals of quantifying the fraction of the X-ray flux arising from wind interactions and determining whether these emissions follow the predictions for adiabatic wind-wind collisions. Methods. Six X-ray observations were collected with XMM-Newton. Three observations were scheduled around the most recent peri-astron passage of HD 168112. Spectra and light curves were analysed and compared with simple predictions of model calculations for X-ray emission from colliding wind systems. Results. The X-ray emission of HD 168112 varies as the inverse of the orbital separation, as expected for an adiabatic wind interaction zone. The relative contribution of intrinsic X-ray emission from wind-embedded shocks varies between 38% at periastron to 81% at apastron. The wind-wind collision zone remains adiabatic even around periastron passage. The X-ray emission of HD 167971 displays variations on the orbital timescale of the inner eclipsing binary. The existing data of this system do not allow us to probe variations on the timescale of the outer orbit. Conclusions. Shock modification due to the action of relativistic electrons does not seem to be efficiently operating in the HD 168112 system. In the existing observations, a significant part of the emission of HD 167971 must arise in the inner eclipsing binary. The origin of this emission is as yet unclear.

Funder

Fonds De La Recherche Scientifique - FNRS

Belgian Federal Science Policy Office

PRODEX

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The colliding-wind binary HD 168112;Astronomy & Astrophysics;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3