Asteroid-NeRF: A deep-learning method for 3D surface reconstruction of asteroids

Author:

Chen ShihanORCID,Wu Bo,Li Hongliang,Li ZhaojinORCID,Liu Yi

Abstract

Context. Asteroids preserve important information about the origin and evolution of the Solar System. Three-dimensional (3D) surface models of asteroids are essential for exploration missions and scientific research. Regular methods for 3D surface reconstruction of asteroids, such as stereo-photogrammetry (SPG), usually struggle to reconstruct textureless areas and can only generate sparse surface models. Stereo-photoclinometry (SPC) can reconstruct pixel-wise topographic details but its performance depends on the availability of images obtained under different illumination conditions and suffers from uncertainties related to surface reflectance and albedo. Aims. This paper presents Asteroid-NeRF, a novel deep-learning method for 3D surface reconstruction of asteroids that is based on the state-of-the-art neural radiance field (NeRF) method. Methods. Asteroid-NeRF uses a signed distance field (SDF) to reconstruct a 3D surface model from multi-view posed images of an asteroid. In addition, Asteroid-NeRF incorporates appearance embedding to adapt to different illumination conditions and to maintain the geometric consistency of a reconstructed surface, allowing it to deal with the different solar angles and exposure conditions commonly seen in asteroid images. Moreover, Asteroid-NeRF incorporates multi-view photometric consistency to constrain the SDF, enabling optimised reconstruction. Results. Experimental evaluations using actual images of asteroids Itokawa and Bennu demonstrate the promising performance of Asteroid-NeRF, complementing traditional methods such as SPG and SPC. Furthermore, due to the global consistency and pixel-wise training of Asteroid-NeRF, it produces highly detailed surface reconstructions. Asteroid-NeRF offers a new and effective solution for high-resolution 3D surface reconstruction of asteroids that will aid future exploratory missions and scientific research on asteroids.

Funder

Research Grants Council of Hong Kong

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3