Evolution of Jupiter and Saturn with helium rain

Author:

Howard S.ORCID,Müller S.ORCID,Helled R.

Abstract

The phase separation between hydrogen and helium at high pressures and temperatures leads to the rainout of helium in the deep interiors of Jupiter and Saturn. This process, also known as “helium rain”, affects their long-term evolution. Modeling the evolution and internal structure of Jupiter and Saturn (and giant exoplanets) relies on the phase diagram of hydrogen and helium. In this work, we simulated the evolution of Jupiter and Saturn with helium rain by applying different phase diagrams of hydrogen and helium and we searched for models that reproduce the measured atmospheric helium abundance in the present day. We find that a consistency between Jupiter’s evolution and the Galileo measurement of its atmospheric helium abundance can only be achieved if a shift in temperature is applied to the existing phase diagrams (−1250 K, +350 K or −3850 K depending on the applied phase diagram). Next, we used the shifted phase diagrams to model Saturn’s evolution and we found consistent solutions for both planets. We confirm that de-mixing in Jupiter is modest, whereas in Saturn, the process of helium rain is significant. We find that Saturn has a large helium gradient and a helium ocean. Saturn’s atmospheric helium mass fraction is estimated to be between 0.13 and 0.16. We also investigated how the applied hydrogen-helium equation of state and the atmospheric model affect the planetary evolution, finding that the predicted cooling times can change by several hundred million years. Constraining the level of super-adiabaticity in the helium gradient formed in Jupiter and Saturn remains challenging and should be investigated in detail in future research. We conclude that further explorations of the immiscibility between hydrogen and helium are valuable as this knowledge directly affects the evolution and current structure of Jupiter and Saturn. Finally, we argue that measuring Saturn’s atmospheric helium content is crucial for constraining Saturn’s evolution as well as the hydrogen-helium phase diagram.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3