The “C”: The large Chameleon-Musca-Coalsack cloud

Author:

Edenhofer GordianORCID,Alves JoãoORCID,Zucker Catherine,Posch LauraORCID,Enßlin Torsten A.ORCID

Abstract

Recent advancements in 3D dust mapping have transformed our understanding of the Milky Way’s local interstellar medium, enabling us to explore its structure in three spatial dimensions for the first time. In this Letter, we use the most recent 3D dust map by Edenhofer et al. to study the well-known Chameleon, Musca, and Coalsack cloud complexes, located about 200 pc from the Sun. We find that these three complexes are not isolated but rather connect to form a surprisingly well-defined half-ring, constituting a single C-shaped cloud with a radius of about 50 pc, a thickness of about 45 pc, and a total mass of about 5 × 104 M, or 9 × 104 M if including everything in the vicinity of the C-shaped cloud. Despite the absence of an evident feedback source at its center, the dynamics of young stellar clusters associated with the C structure suggest that a single supernova explosion about 4 Myr–10 Myr ago likely shaped this structure. Our findings support a single origin story for these cloud complexes, suggesting that they were formed by feedback-driven gas compression, and offer new insights into the processes that govern the birth of star-forming clouds in feedback-dominated regions, such as the Scorpius-Centaurus association.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3