Space and laboratory discovery of iminopentadienylidene, HNC5

Author:

Fuentetaja R.ORCID,Cabezas C.ORCID,Endo Y.,Agúndez M.,Tercero B.ORCID,Marcelino N.ORCID,de Vicente P.ORCID,Cernicharo J.ORCID

Abstract

We report the discovery of HNC5 in TMC-1. Six lines have been found in harmonic relation, with quantum numbers J = 12−11 up to J = 17−16. The lines can be reproduced with the standard frequency relation for linear molecules with B = 1361.75034 ± 0.00033 MHz and D = 32.2 ± 0.7 Hz. The assignment of the carrier to iminopentadienylidene was achieved through examining the possible candidates at a high level of theoretical ab initio calculations. Motivated by the good agreement between the observed B and the calculated value for HNC5, we searched for it in the laboratory and observed the transitions J = 5−4 to 7−6. The derived rotational and distortion constants are 1361.74998 ± 0.00040 MHz and 26.5 ± 5.5 Hz, respectively. Hence, we solidly conclude that the carrier of the lines found in TMC-1 is HNC5. The calculated dipole moment for this species is 7.7 D and the derived column density is (1.3 ± 0.2) × 1010 cm−2. We used the new QUIJOTE data to improve previous observations of HC4NC and found that the abundance ratio HC4NC/HNC5 is 10 ± 2. The abundance ratio of HC5N and its two isomers HC4NC and HNC5 is 500 ± 80 and 5100 ± 800, respectively. These abundance ratios are higher by a factor of ∼10 than those of the equivalent isomers of HC3N. Chemical models reproduce the observed abundances reasonably well when a chemistry similar to that of the smaller species C3HN isomers is adopted. The formation of HNC5 and HC4NC arises from the dissociative recombination with electrons of the cations HC5NH+ and HC4NCH+.

Funder

Ministry of Science and Technology, Taiwan

Consejo Superior de Investigaciones Científicas

Ministerio de Ciencia e Innovación

European Research Council

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3