The effects of driving time scales on coronal heating in a stratified atmosphere

Author:

Howson T. A.ORCID,De Moortel I.ORCID

Abstract

Aims. We investigate the atmospheric response to coronal heating driven by random velocity fields with different characteristic time scales and amplitudes. Methods. We conducted a series of three-dimensional magnetohydrodynamic simulations of random driving imposed on a gravitationally stratified model of the solar atmosphere. In order to understand differences between alternating current (AC) and direct current (DC) heating, we considered the effects of changing the characteristic time scales of the imposed velocities. We also investigated the effects of the magnitude of the velocity driving. Results. In all cases, complex foot point motions lead to a proliferation of current sheets and energy dissipation throughout the coronal volume. For a given driving amplitude, DC driving typically leads to a greater rate of energy injection when compared to AC driving. This ultimately leads to the formation of larger currents, increased heating rates, and higher coronal temperatures in DC simulations. There is no difference in the spatial distribution of energy dissipation across simulations; however, energy release events in AC cases tend to be more frequent and last for less time than in DC cases. This results in more asymmetric temperature profiles for field lines heated by AC drivers. Higher velocity driving is associated with larger currents, higher temperatures, and the corona occupying a larger fraction of the simulation volume. In all cases, the majority of heating is associated with small energy release events, which occur much more frequently than larger events. Conclusions. When combined with observational results that highlight a greater abundance of oscillatory power in lower frequency modes, these findings suggest that energy release in the corona is more likely to be driven by longer time scale motions. In the corona, AC and DC driving occur concurrently and their effects remain difficult to isolate. The distribution of field line temperatures and the asymmetry of temperature profiles may reveal the frequency and longevity of energy release events and therefore the relative importance of AC and DC heating.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3