Highly collimated microquasar jets as efficient cosmic-ray sources

Author:

Escobar G. J.ORCID,Pellizza L. J.,Romero G. E.

Abstract

Context. Supernova remnants (SNRs) are currently believed to be the main sites of origin for Galactic cosmic rays. This scenario, however, fails to explain some of the features observed in the cosmic-ray spectrum. Microquasars have been proposed as additional candidates, as their non-thermal emission indicates the existence of efficient particle acceleration mechanisms in their jets. Only a few initial attempts have been made so far to quantify the contribution of microquasars to the Galactic cosmic-ray population. A promising scenario envisages the production of relativistic neutrons in the jets that decay outside the system, injecting relativistic protons to the surroundings. The first investigations of this scenario suggest that microquasars might stand as a fair alternative to cosmic-ray sources. Aims. We aim to assess the role played by the degree of collimation of the jet on the cosmic-ray energetics in the neutron-carrier scenario, as well as the location and size of the emission region and the interactions of protons with photon fields. Our goal is to explain the Galactic component of the observed proton cosmic-ray spectrum at energies higher than ∼10 GeV and to relate the aforementioned jet properties with the power and spectral index of the produced cosmic rays. Methods. Here, we improve upon previous analytical models of relativistic particle transport in microquasar jets by including prescriptions for the jet geometry and convection within it. We introduced the neutron component through catastrophic terms that couple the proton and neutron transport equations, then we computed the escape and decay of these neutrons. Finally, we followed the propagation of the decay products and obtained the proton cosmic-ray spectrum once the particles reached the interstellar medium. Results. We find that collimated jets, with compact acceleration regions close to the jet base, are very efficient sources that could deliver a fraction of up to ∼0.01 of their relativistic proton luminosity into cosmic rays. Collimation is the most significant feature regarding efficiency: a well-collimated jet might be four orders of magnitude more efficient than a poorly collimated one. These sources produce a steep spectral index of ∼2.3 at energies up to ∼10 TeV. Conclusions. Single microquasars may rival SNRs with respect to the power injected to the interstellar medium through cosmic rays. The main advantage of the former is the production of a steeper spectrum than the latter that is closer to what has been observed. The predictions of our model may be used to infer the total contribution of the population of Galactic microquasars to the cosmic ray population and, therefore, to quantitatively assess their significance as cosmic-ray sources.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3