Linking star formation thresholds and truncations in the thin and thick disks of the low-mass galaxy UGC 7321

Author:

Díaz-García S.,Comerón S.,Courteau S.,Watkins A. E.,Knapen J. H.,Román J.

Abstract

Thin and thick disks are found in most spiral galaxies, yet their formation scenarios remain uncertain. Whether thick disks form through slow or fast, internal or environmental, processes is unclear. The physical origin of outer truncations in thin and thick disks, observed as a drop in optical and near-infrared (NIR) surface brightness profiles, is also a much debated topic. These truncations have been linked to star formation (SF) thresholds in Milky-Way-type galaxies, but no such connection has been made for their low-mass counterparts or in thick disks. Our photometric analysis of the edge-on galaxy UGC 7321 offers a possible breakthrough. This well-studied diffuse, isolated, bulgeless, ultra-thin galaxy is thought to be under-evolved both dynamically and in SF. It is an ideal target for disentangling internal effects in the formation of thick disks and truncations. Our axial light profiles from deep far- and near-ultraviolet (GALEX) images, tracing recent SF, and optical (DESI grz) and NIR (Spitzer 3.6 μm) images, tracing old stellar populations, enable a detailed identification of an outer truncation in all probed wavelengths in both the thin and thick disks. After deprojecting to a face-on view, a sharp truncation signature is found at a stellar density of 1.5 ± 0.5 ℳ pc−2, in agreement with theoretical expectations of gas density SF thresholds. The redder colours beyond the truncation radius are indicative of stellar migration towards the outer regions. We thus show that thick disks and truncations can form via internal mechanisms alone, given the pristine nature of UGC 7321. We report the discovery of a truncation at and above the mid-plane of a diffuse galaxy that is linked to a SF threshold; this poses a constraint on physically motivated disk size measurements among low-mass galaxies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3