Metal content of the circumgalactic medium around star-forming galaxies at z ∼ 2.6 as revealed by the VIMOS Ultra-Deep Survey

Author:

Méndez-Hernández H.ORCID,Cassata P.,Ibar E.,Amorín R.ORCID,Aravena M.ORCID,Bardelli S.ORCID,Cucciati O.,Garilli B.,Giavalisco M.,Guaita L.ORCID,Hathi N.ORCID,Koekemoer A.,Le Brun V.ORCID,Lemaux B. C.ORCID,Maccagni D.,Ribeiro B.,Tasca L.,Tejos N.ORCID,Thomas R.,Tresse L.,Vergani D.ORCID,Zamorani G.ORCID,Zucca E.ORCID

Abstract

Context. The circumgalactic medium (CGM) is the location where the interplay between large-scale outflows and accretion onto galaxies occurs. Metals in different ionization states flowing between the circumgalactic and intergalactic mediums are affected by large galactic outflows and low-ionization state inflowing gas. Observational studies on their spatial distribution and their relation with galaxy properties may provide important constraints on models of galaxy formation and evolution. Aims. The main goal of this paper is to provide new insights into the spatial distribution of the circumgalactic of star-forming galaxies at 1.5 < z < 4.5 (⟨z⟩∼2.6) in the peak epoch of cosmic star formation activity in the Universe. We also look for possible correlations between the strength of the low- and high-ionization absorption features (LIS and HIS) and stellar mass, star formation rate, effective radius, and azimuthal angle ϕ that defines the location of the absorbing gas relative to the galaxy disc plane. Methods. The CGM has been primarily detected via the absorption features that it produces on the continuum spectrum of bright background sources. We selected a sample of 238 close pairs from the VIMOS Ultra Deep Survey to examine the spatial distribution of the gas located around star-forming galaxies and generate composite spectra by co-adding spectra of background galaxies that provide different sight-lines across the CGM of star-forming galaxies. Results. We detect LIS (C II and Si II) and HIS (Si IV, C IV) up to separations ⟨b⟩ = 172 kpc and 146 kpc. Beyond this separation, we do not detect any significant signal of CGM absorption in the background composite spectra. Our Lyα, LIS, and HIS rest-frame equivalent width (W0) radial profiles are at the upper envelope of the W0 measurements at lower redshifts, suggesting a potential redshift evolution for the CGM gas content producing these absorptions. We find a correlation between C II and C IV with star formation rate and stellar mass, as well as trends with galaxy size estimated by the effective radius and azimuthal angle. Galaxies with high star formation rate (log[SFR/(M yr−1)] > 1.5) and stellar mass (log[M/M] > 10.2) show stronger C IV absorptions compared with those low SFR (log[SFR/(M yr−1)] < 0.9) and low stellar mass (log[M/M] < 9.26). The latter population instead shows stronger C II absorption than their more massive or more star-forming counterparts. We compute the C II/C IVW0 line ratio that confirms the C II and C IV correlations with impact parameter, stellar mass, and star formation rate. We do not find any correlation with ϕ in agreement with other high-redshift studies and in contradiction to what is observed at low redshift where large-scale outflows along the minor axis forming bipolar outflows are detected. Conclusions. We find that the stronger C IV line absorptions in the outer regions of these star-forming galaxies could be explained by stronger outflows in galaxies with higher star formation rates and stellar masses that are capable of projecting the ionized gas up to large distances and/or by stronger UV ionizing radiation in these galaxies that is able to ionize the gas even at large distances. On the other hand, low-mass galaxies show stronger C II absorptions, suggesting larger reservoirs of cold gas that could be explained by a softer radiation field unable to ionize high-ionization state lines or by the galactic fountain scenario where metal-rich gas ejected from previous star formation episodes falls back to the galaxy. These large reservoirs of cold neutral gas around low-mass galaxies could be funnelled into the galaxies and eventually provide the necessary fuel to sustain star formation activity.

Funder

National Fund for Scientific and Technological Research of Chile

ANID

Publisher

EDP Sciences

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating Ionization in the Intergalactic Medium;The Astrophysical Journal;2024-04-01

2. ALPACA: a new semi-analytical model for metal absorption lines emerging from clumpy galactic environments;Monthly Notices of the Royal Astronomical Society;2024-02-15

3. Probing the Galactic halo with RR Lyrae stars – IV. On the Oosterhoff dichotomy of RR Lyrae stars;Monthly Notices of the Royal Astronomical Society;2023-09-07

4. FOREVER22: gas and metal outflow from massive galaxies in protocluster regions;Monthly Notices of the Royal Astronomical Society;2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3