Evidence of a primordial isotopic gradient in the inner region of the solar protoplanetary disc

Author:

Mah J.ORCID,Brasser R.,Woo J. M. Y.,Bouvier A.ORCID,Mojzsis S. J.ORCID

Abstract

Not only do the sampled terrestrial worlds (Earth, Mars, and asteroid 4 Vesta) differ in their mass-independent (nucleosynthetic) isotopic compositions of many elements (e.g. ε48Ca, ε50Ti, ε54Cr, ε92Mo), the magnitudes of some of these isotopic anomalies also appear to correlate with heliocentric distance. While the isotopic differences between the Earth and Mars may be readily accounted for by the accretion of mostly local materials in distinct regions of the protoplanetary disc, it is unclear whether this also applies to asteroid Vesta. Here we analysed the available data from our numerical simulation database to determine the formation location of Vesta in the framework of three planet-formation models: classical, Grand Tack, and Depleted Disc. We find that Vesta has a high probability of forming locally in the asteroid belt in models where material mixing in the inner disc is limited; this limited mixing is implied by the isotopic differences between the Earth and Mars. Based on our results, we propose several criteria to explain the apparent correlation between the different nucleosynthetic isotopic compositions of the Earth, Mars, and Vesta: (1) these planetary bodies accreted their building blocks in different regions of the disc, (2) the inner disc is characterised by an isotopic gradient, and (3) the isotopic gradient was preserved during the formation of these planetary bodies and was not diluted by material mixing in the disc (e.g. via giant planet migration).

Funder

DFG

Research Centre for Astronomy and Earth Sciences

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3