Toward the limits of complexity of interstellar chemistry: Rotational spectroscopy and astronomical search for n- and i-butanal

Author:

Sanz-Novo M.,Belloche A.,Rivilla V. M.,Garrod R. T.,Alonso J. L.,Redondo P.,Barrientos C.,Kolesniková L.,Valle J. C.,Rodríguez-Almeida L.,Jimenez-Serra I.,Martín-Pintado J.,Müller H. S. P.,Menten K. M.

Abstract

Context. In recent times, large organic molecules of exceptional complexity have been found in diverse regions of the interstellar medium. Aims. In this context, we aim to provide accurate frequencies of the ground vibrational state of two key aliphatic aldehydes, n-butanal and its branched-chain isomer, i-butanal, to enable their eventual detection in the interstellar medium. We also want to test the level of complexity that interstellar chemistry can reach in regions of star formation. Methods. We employ a frequency modulation millimeter-wave absorption spectrometer to measure the rotational features of n- and i-butanal. We analyze the assigned rotational transitions of each rotamer separately using the A-reduced semirigid-rotor Hamiltonian. We use the spectral line survey ReMoCA performed with the Atacama Large Millimeter/submillimeter Array to search for n- and i-butanal toward the star-forming region Sgr B2(N). We also search for both aldehydes toward the molecular cloud G+0.693−0.027 with IRAM 30 m and Yebes 40 m observations. The observational results are compared with computational results from a recent gas-grain astrochemical model. Results. Several thousand rotational transitions belonging to the lowest-energy conformers of two distinct linear and branched isomers have been assigned in the laboratory spectra up to 325 GHz. A precise set of the relevant rotational spectroscopic constants has been determined for each structure as a first step toward identifying both molecules in the interstellar medium. We report non-detections of n-and i-butanal toward both sources, Sgr B2(N1S) and G+0.693-0.027. We find that n- and i-butanal are at least 2-6 and 6-18 times less abundant than acetaldehyde toward Sgr B2(N1S), respectively, and that n-butanal is at least 63 times less abundant than acetaldehyde toward G+0.693−0.027. While propanal is not detected toward Sgr B2(N1S) either, with an abundance at least 5–11 lower than that of acetaldehyde, propanal is found to be 7 times less abundant than acetaldehyde in G+0.693−0.027. Comparison with astrochemical models indicates good agreement between observed and simulated abundances (where available). Grain-surface chemistry appears sufficient to reproduce aldehyde ratios in G+0.693−0.027; gas-phase production may play a more active role in Sgr B2(N1S). Model estimates for the larger aldehydes indicate that the observed upper limits may be close to the underlying values. Conclusions. Our astronomical results indicate that the family of interstellar aldehydes in the Galactic center region is characterized by a drop of one order of magnitude in abundance at each incrementation in the level of molecular complexity.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3