A modified Milne-Eddington approximation for a qualitative interpretation of chromospheric spectral lines

Author:

Dorantes-Monteagudo A. J.ORCID,Siu-Tapia A. L.ORCID,Quintero-Noda C.ORCID,Orozco Suárez D.ORCID

Abstract

Context. The Milne-Eddington approximation provides an analytic and simple solution to the radiative transfer equation. It can be easily implemented in inversion codes used to fit spectro-polarimetric observations and infer average values of the magnetic field vector and the line-of-sight velocity of the solar plasma. However, in principle, it is restricted to spectral lines that are formed under local thermodynamic conditions, namely, photospheric and optically thin lines. Aims. We show that a simple modification to the Milne-Eddington approximation is sufficient to infer relevant physical parameters from spectral lines that deviate from local thermodynamic equilibrium, such as those typically observed in the solar chromosphere. Methods. We modified the Milne-Eddington approximation by including several exponential terms in the source function to reproduce the prototypical shape of chromospheric spectral lines. To check the validity of such an approximation, we first studied the influence of these new terms on the profile shape by means of the response functions. Then we tested the performance of an inversion code including the modification against the presence of noise. The approximation was also tested with realistic spectral lines generated with the RH numerical radiative transfer code. Finally, we confronted the code with synthetic profiles generated from magneto-hydrodynamic simulations carried out with the Bifrost code. For the various tests, we focused on the vector magnetic field and the line-of-sight velocity. We compared our results with the weak-field approximation and center of gravity technique as well. Results. The response function corresponding to the new terms in the source function have no trade-offs with the response to the different components of the magnetic field vector and line-of-sight velocity. This allows us to perform a robust inference of the physical parameters from the interpretation of spectral line shapes. The strategy has been successfully applied to synthetic chromospheric Stokes profiles generated with both standard models and realistic magnetohydrodynamic (MHD) simulations. The magnetic field vector and velocity can be successfully recovered with the modified Milne-Eddington approximation. Conclusions. Milne-Eddington model atmospheres that include exponential terms are not new to the solar community but have been overlooked for quite some time. We show that our modification to the Milne-Eddington approximation succeeds in reproducing the profile shape of two chromospheric spectral lines, namely, the Mg I b2 line and the Ca II at 854.2 nm. The results obtained with this approach are in good agreement with the results obtained from the weak field approximation (for magnetic field) and the center of gravity (for velocity). However, the Milne-Eddington approximation possesses a great advantage over classical methods since it is not limited to weak magnetic fields or to a restricted range of velocities.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. My Rewarding Life in Science;Solar Physics;2023-09

2. Designing wavelength sampling for Fabry–Pérot observations;Astronomy & Astrophysics;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3