THA 15−31: Discovery with VLT/X-shooter and Swift/UVOT of a new symbiotic star of the accreting-only variety

Author:

Munari U.,Alcalá J. M.,Frasca A.,Masetti N.,Traven G.,Akras S.,Zampieri L.

Abstract

We report the discovery and characterization of a new symbiotic star of the accreting-only variety, which we observed in the optical/near-infrared (NIR) with VLT/X-shooter and in the X-rays/ultraviolet with Swift/UVOT+XRT. The new symbiotic star, THA 15−31, was previously described as a pre-main sequence star belonging to the Lupus 3 association. Our observations, ancillary data, and Gaia EDR3 parallax indicate that THA 15−31 is a symbiotic star composed of an M6III red giant and an accreting companion, is subject to EB − V = 0.38 reddening, and is located at a distance of ∼12 kpc and at 1.8 kpc above the Galactic plane in the outskirts of the Bulge. The luminosity of the accreting companion is ∼100 L, placing THA 15−31 among the symbiotic stars accreting at a high rate (2.5 × 10−8M yr−1 if the accretion is occurring on a white dwarf of 1 M). The observed emission lines originate primarily from H I, He I, and Fe II, with no He II or other high-excitation lines observed; a sharp central absorption superimposed on the Balmer emission lines is observed, while all other lines have a simple Gaussian-like profile. The emission from the companion dominates over the M6III red giant at U and B-band wavelengths, and is consistent with an origin primarily in an optically thick accretion disk. No significant photometric variability is observed at optical or NIR wavelengths, suggesting either a face-on orbital orientation and/or that the red giant is far from Roche-lobe filling conditions. The profile of emission lines supports a low orbital inclination if they form primarily in the accretion disk. An excess emission is present in AllWISE W3 (12 μm) and W4 (22 μm) data, radiating a luminosity ≥35 L, consistent with thermal emission from optically thin circumstellar dust.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive Analysis of a Symbiotic Candidate V503 Her;The Astronomical Journal;2023-07-17

2. Where are the missing symbiotic stars? Uncovering hidden symbiotic stars in public catalogues;Monthly Notices of the Royal Astronomical Society;2023-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3