Periodic orbits in the 1:2:3 resonant chain and their impact on the orbital dynamics of the Kepler-51 planetary system

Author:

Antoniadou Kyriaki I.,Voyatzis George

Abstract

Aims. Space missions have discovered a large number of exoplanets evolving in (or close to) mean-motion resonances (MMRs) and resonant chains. Often, the published data exhibit very high uncertainties due to the observational limitations that introduce chaos into the evolution of the system on especially shorter or longer timescales. We propose a study of the dynamics of such systems by exploring particular regions in phase space. Methods. We exemplify our method by studying the long-term orbital stability of the three-planet system Kepler-51 and either favor or constrain its data. It is a dual process which breaks down in two steps: the computation of the families of periodic orbits in the 1:2:3 resonant chain and the visualization of the phase space through maps of dynamical stability. Results. We present novel results for the general four-body problem. Stable periodic orbits were found only in the low-eccentricity regime. We demonstrate three possible scenarios safeguarding Kepler-51, each followed by constraints. Firstly, there are the 2/1 and 3/2 two-body MMRs, in which eb < 0.02, such that these two-body MMRs last for extended time spans. Secondly, there is the 1:2:3 three-body Laplace-like resonance, in which ec < 0.016 and ed < 0.006 are necessary for such a chain to be viable. Thirdly, there is the combination comprising the 1/1 secondary resonance inside the 2/1 MMR for the inner pair of planets and an apsidal difference oscillation for the outer pair of planets in which the observational eccentricities, eb and ec, are favored as long as ed ≈ 0. Conclusions. With the aim to obtain an optimum deduction of the orbital elements, this study showcases the need for dynamical analyses based on periodic orbits performed in parallel to the fitting processes.

Funder

State Scholarships Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3