Radiation pressure on dust explaining the low ionized broad emission lines in active galactic nuclei

Author:

Naddaf M. H.ORCID,Czerny B.ORCID

Abstract

Context. Broad emission lines are the most characteristic features in the spectra of galaxies with an active galactic nucleus (AGN). They mostly show either single-peaked or double-peaked profiles and originate from a complex dynamics of the likely discrete clouds moving in a spatially extended region known as the broad line region (BLR). Aims. In this paper, we present a large grid of results, which is used to test the model based on calculations of the spectral line generic profiles. Methods. We followed a non-hydrodynamical single-cloud approach to BLR dynamics based on a radiatively dust-driven model. We previously showed in detail that the 2.5D version of the model could provide us with the 3D geometry of the BLR. Results. We show that the shape of profiles not only depends on the accretion rate of the source, the black hole mass, and the viewing angle, but it is most significantly affected by the adopted dust-to-gas mass ratio regulating the strength of the radiation pressure. We also show that the model can aptly explain the low ionized broad emission lines of the mean spectrum of quasars, such as MgII and Hβ. Conclusions. The radiatively dust-driving mechanism can appropriately account for the low-ionized part of BLR of AGNs.

Funder

Polish Funding Agency National Science Centre

MNiSW grant

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Covering Factor of the Dust-Driven Broad-Line Region Clouds;Universe;2024-01-10

2. The dust attenuation scaling relation of star-forming galaxies in the eagle simulations;Monthly Notices of the Royal Astronomical Society;2024-01-08

3. Understanding the universal dust attenuation scaling relation of star-forming galaxies;Monthly Notices of the Royal Astronomical Society;2023-12-29

4. Broad-line region in active galactic nuclei: Dusty or dustless?;Astronomy & Astrophysics;2023-12

5. A disc wind model for blueshifts in quasar broad emission lines;Monthly Notices of the Royal Astronomical Society;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3