Physics of ULIRGs with MUSE and ALMA: The PUMA project

Author:

Perna M.ORCID,Arribas S.ORCID,Colina L.,Pereira Santaella M.,Lamperti I.ORCID,Di Teodoro E.ORCID,Übler H.ORCID,Costantin L.ORCID,Maiolino R.,Cresci G.ORCID,Bellocchi E.ORCID,Catalán-Torrecilla C.ORCID,Cazzoli S.ORCID,Piqueras López J.ORCID

Abstract

Context. A classical scenario suggests that ultra-luminous infrared galaxies (ULIRGs) transform colliding spiral galaxies into a spheroid-dominated early-type galaxy. Recent high-resolution simulations have instead shown that, under some circumstances, rotation disks can be preserved during the merging process or rapidly regrown after coalescence. Our goal is to analyse in detail the ionised gas kinematics in a sample of ULIRGs to infer the incidence of gas rotational dynamics in late-stage interacting galaxies and merger remnants. Aims. We analysed integral field spectrograph MUSE data of a sample of 20 nearby (z < 0.165) ULIRGs (with 29 individual nuclei) as part of the Physics of ULIRGs with MUSE and ALMA (PUMA) project. We used multi-Gaussian fitting techniques to identify gaseous disk motions and the 3D-Barolo tool to model them. Methods. We found that 27% (8 out of 29) individual nuclei are associated with kiloparsec-scale disk-like gas motions. The rest of the sample displays a plethora of gas kinematics, dominated by winds and merger-induced flows, which makes the detection of rotation signatures difficult. On the other hand, the incidence of stellar disk-like motions is ∼2 times larger than gaseous disks, as the former are probably less affected by winds and streams. The eight galaxies with a gaseous disk present relatively high intrinsic gas velocity dispersion (σ0 ∈ [30 − 85] km s−1), rotationally supported motions (with gas rotation velocity over velocity dispersion vrot/σ0 ∼ 1 − 8), and dynamical masses in the range (2 − 7)×1010 M. By combining our results with those of local and high-z disk galaxies (up to z ∼ 2) from the literature, we found a significant correlation between σ0 and the offset from the main sequence (δMS), after correcting for their evolutionary trends. Results. Our results confirm the presence of kiloparsec-scale rotating disks in interacting galaxies and merger remnants in the PUMA sample, with an incidence going from 27% (gas) to ≲50% (stars). Their gas σ0 is up to a factor of ∼4 higher than in local normal main sequence galaxies, similar to high-z starbursts as presented in the literature; this suggests that interactions and mergers enhance the star formation rate while simultaneously increasing the velocity dispersion in the interstellar medium.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3