3D RMHD simulations of jet-wind interactions in high-mass X-ray binaries

Author:

López-Miralles J.ORCID,Perucho M.,Martí J. M.,Migliari S.,Bosch-Ramon V.

Abstract

Context. Relativistic jets are ubiquitous in the Universe. In microquasars, especially in high-mass X-ray binaries, the interaction of jets with the strong winds driven by the massive and hot companion star in the vicinity of the compact object is fundamental for understanding the jet dynamics, nonthermal emission, and long-term stability. However, the role of the jet magnetic field in this process is unclear. In particular, it is still debated whether the magnetic field favors jet collimation or triggers more instabilities that can jeopardize the jet evolution outside the binary. Aims. We study the dynamical role of weak and moderate to strong toroidal magnetic fields during the first several hundred seconds of jet propagation through the stellar wind, focusing on the magnetized flow dynamics and the mechanisms of energy conversion. Methods. We developed the code Lóstrego v1.0, a new 3D relativistic magnetohydrodynamics code to simulate astrophysical plasmas in Cartesian coordinates. Using this tool, we performed the first 3D relativistic magnetohydrodynamics numerical simulations of relativistic magnetized jets propagating through the clumpy stellar wind in a high-mass X-ray binary. To highlight the effect of the magnetic field in the jet dynamics, we compared the results of our analysis with those of previous hydrodynamical simulations. Results. The overall morphology and dynamics of weakly magnetized jet models is similar to previous hydrodynamical simulations, where the jet head generates a strong shock in the ambient medium and the initial overpressure with respect to the stellar wind drives one or more recollimation shocks. On the timescales of our simulations (i.e., t < 200 s), these jets are ballistic and seem to be more stable against internal instabilities than jets with the same power in the absence of fields. However, moderate to strong toroidal magnetic fields favor the development of current-driven instabilities and the disruption of the jet within the binary. A detailed analysis of the energy distribution in the relativistic outflow and the ambient medium reveals that magnetic and internal energies can both contribute to the effective acceleration of the jet. Moreover, we verified that the jet feedback into the ambient medium is highly dependent on the jet energy distribution at injection, where hotter, more diluted and/or more magnetized jets are more efficient. This was anticipated by feedback studies in the case of jets in active galaxies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3