The SEDIGISM survey: Molecular cloud morphology

Author:

Neralwar K. R.ORCID,Colombo D.,Duarte-Cabral A.,Urquhart J. S.,Mattern M.,Wyrowski F.,Menten K. M.,Barnes P.,Sánchez-Monge Á.,Beuther H.,Rigby A. J.,Mazumdar P.,Eden D.,Csengeri T.,Dobbs C. L.,Veena V. S.,Neupane S.,Henning T.,Schuller F.,Leurini S.,Wienen M.,Yang A. Y.,Ragan S. E.,Medina S.,Nguyen-Luong Q.

Abstract

We present one of the very first extensive classifications of a large sample of molecular clouds based on their morphology. This is achieved using a recently published catalogue of 10 663 clouds obtained from the first data release of the Structure, Excitation and Dynamics of the Inner Galactic InterStellar Medium (SEDIGISM) survey. The clouds are classified into four different morphologies via visual inspection and using an automated algorithm – J plots. The visual inspection also serves as a test for the J plots algorithm as this is the first time it has been used on molecular gas. Generally, it has been found that the structure of molecular clouds is highly filamentary, and our observations indeed verify that most of our molecular clouds are elongated structures. Based on our visual classification of the 10 663 SEDIGISM clouds, 15% are ring-like, 57% are elongated, 15% are concentrated, and 10% are clumpy clouds. The remaining clouds do not belong to any of these morphology classes and are termed unclassified. We compare the SEDIGISM molecular clouds with structures identified through other surveys: the elongated structures from the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) and the bubbles from Milky Way Project (MWP). We find that many of the ATLASGAL and MWP structures are velocity coherent. Elongated ATLASGAL structures overlap with ≈21% of the elongated SEDIGISM structures (elongated and clumpy clouds), and MWP bubbles overlap with ≈25% of the ring-like SEDIGISM clouds. We also analyse the star formation associated with different cloud morphologies using two different techniques. The first technique examines star formation efficiency and the dense gas fraction based on SEDIGISM cloud and ATLASGAL clump data. The second technique uses the highmass star formation threshold for molecular clouds. The results indicate that clouds with ring-like and clumpy morphologies show a higher degree of star formation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference104 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3