Non-thermal emission in hyper-velocity and semi-relativistic stars

Author:

Martinez J. R.ORCID,del Palacio S.ORCID,Bosch-Ramon V.,Romero G. E.ORCID

Abstract

Context.There is a population of runaway stars that move at extremely high speeds with respect to their surroundings. The fast motion and the stellar wind of these stars, plus the wind-medium interaction, can lead to particle acceleration and non-thermal radiation.Aims.We characterise the interaction between the winds of fast runaway stars and their environment, in particular to establish their potential as cosmic-ray accelerators and non-thermal emitters.Methods.We model the hydrodynamics of the interaction between the stellar wind and the surrounding material. We self-consistently calculate the injection and transport of relativistic particles in the bow shock using a multi-zone code, and compute their broadband emission from radio toγ-rays.Results.Both the forward and reverse shocks are favourable sites for particle acceleration, although the radiative efficiency of particles is low and therefore the expected fluxes are in general rather faint.Conclusions.We show that high-sensitivity observations in the radio band can be used to detect the non-thermal radiation associated with bow shocks from hyper-velocity and semi-relativistic stars. Hyper-velocity stars are expected to be modest sources of sub-TeV cosmic rays, accounting perhaps for ∼0.1% of that of galactic cosmic rays.

Funder

State Agency for Research of the Spanish Ministry of Science and Innovation

Institute of Cosmos Sciences

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3