A novel framework for semi-Bayesian radial velocities through template matching

Author:

Silva A. M.ORCID,Faria J. P.ORCID,Santos N. C.,Sousa S. G.ORCID,Viana P. T. P.ORCID,Martins J. H. C.,Figueira P.ORCID,Lovis C.,Pepe F.ORCID,Cristiani S.ORCID,Rebolo R.,Allart R.,Cabral A.,Mehner A.ORCID,Sozzetti A.ORCID,Mascareño A. SuárezORCID,Martins C. J. A. P.ORCID,Ehrenreich D.,Mégevand D.,Palle E.ORCID,Curto G. LoORCID,Tabernero H. M.,Lillo-Box J.ORCID,Hernández J. I. GonzálezORCID,Osorio M. R. Zapatero,Hara N. C.,Nunes N. J.ORCID,Di Marcantonio P.ORCID,Udry S.,Adibekyan V.ORCID,Dumusque X.

Abstract

Context. The ability to detect and characterise an increasing variety of exoplanets has been made possible by the continuous development of stable, high-resolution spectrographs and the Doppler radial velocity (RV) method. The cross-correlation function (CCF) method is one of the traditional approaches used to derive RVs. More recently, template matching has been introduced as an advantageous alternative for M-dwarf stars. Aims. We describe a new implementation of the template matching technique for stellar RV estimation within a semi-Bayesian framework, providing a more statistically principled characterisation of the RV measurements and associated uncertainties. This methodology, named the Semi-Bayesian Approach for RVs with Template matching, S-BART, can currently be applied to HARPS and ESPRESSO data. We first validate its performance with respect to other template matching pipelines using HARPS data. We then apply S-BART to ESPRESSO observations, comparing the scatter and uncertainty of the derived RV time series with those obtained using the CCF method. We leave a full analysis of the planetary and activity signals present in the considered datasets for future work. Methods. In the context of a semi-Bayesian framework, a common RV shift is assumed to describe the difference between each spectral order of a given stellar spectrum and a template built from the available observations. Posterior probability distributions are obtained for the relative RV associated with each spectrum using the Laplace approximation, after marginalization with respect to the continuum. We also implemented, for validation purposes, a traditional template matching approach, where a RV shift is estimated individually for each spectral order and the final RV estimate is calculated as a weighted average of the RVs of the individual orders. Results. The application of our template-based methods to HARPS archival observations of Barnard’s star allowed us to validate our implementation against other template matching methods. Although we find similar results, the standard deviation of the RVs derived with S-BART is smaller than that obtained with the HARPS-TERRA and SERVAL pipelines. We believe this is due to differences in the construction of the stellar template and the handling of telluric features. After validating S-BART, we applied it to 33 ESPRESSO GTO targets, evaluating its performance and comparing it to the CCF method as implemented in ESO’s official pipeline. We find a decrease in the median RV scatter of ~10 and ~4% for M- and K-type stars, respectively. Our semi-Bayesian framework yields more precise RV estimates than the CCF method, in particular in the case of M-type stars where S-BART achieves a median uncertainty of ~15 cm s−1 over 309 observations of 16 targets. Further, with the same data we estimated the nightly zero point (NZP) of the instrument, finding a weighted NZP scatter of below ~0.7 m s−1. Given that this includes stellar variability, photon noise, and potential planetary signals, it should be taken as an upper limit on the RV precision attainable with ESPRESSO data.

Funder

FCT - Fundação para a Ciência e a Tecnologia

Swiss National Science Foundation

Spanish Ministry of Science and Innovation

Government of the Canary Islands

European Research Council

Agencia Estatal de Investigación of the Ministerio de Ciencia, Innovación y Universidades

”la Caixa” Foundation

European Union’s Horizon 2020 research and innovation programme

Trottier Family Foundation

FRQNT

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3