Mass of the dynamically hot inner stellar halo predicts the ancient accreted stellar mass

Author:

Zhu LingORCID,Pillepich Annalisa,van de Ven Glenn,Leaman Ryan,Hernquist Lars,Nelson Dylan,Pakmor Ruediger,Vogelsberger Mark,Zhang Le

Abstract

Galactic dynamical structures are fossil records of the assembly histories of galaxies. By analyzing the cosmological hydrodynamical simulation TNG50, we find that a dynamical structure that we call the “hot inner stellar halo”, defined by stars on dynamically hot orbits with circularity λz < 0.5 at 3.5 kpc < r ≲ 2 Re, is a strong indicator of the mass of accreted satellite galaxies. We find a strong correlation between the mass of this hot inner stellar halo and the total ex situ stellar mass. There is a similarly strong correlation with the stellar mass of the most massive secondary galaxy ever merged. These TNG50 correlations are compatible with those predicted by other simulations, for example by TNG100 across the whole mass range under study (galaxy stellar masses, M*, in the 1010.3 − 11.6M range) and by EAGLE for M* ≳ 1010.6M galaxies. This shows that our predictions are robust across different galaxy formation and feedback models and hold across a wide range of numerical resolution. The hot inner stellar halo is a product of massive and typically ancient mergers, with inner-halo stars exhibiting three main physical origins: accreted and stripped from massive satellites, dynamically heated by mergers from the bulge and/or disk in the main progenitor, and formed from star formation triggered during mergers. The mass of the hot inner stellar halo defined in this paper is a quantity that can be robustly obtained for real galaxies by applying a population-orbit superposition method to integral-field-unit spectroscopy data, out to a distance of ∼2 Re, which is possible with current observations. Hence, this paper shows that integral-field-unit observations and dynamical models of the inner regions of galaxies provide a way to quantitatively determine the mass of ancient accreted satellites.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3