Updated Gaia-2MASS 3D maps of Galactic interstellar dust

Author:

Lallement R.ORCID,Vergely J. L.,Babusiaux C.,Cox N. L. J.

Abstract

Aims. Three-dimensional (3D) maps of Galactic interstellar dust are a tool for a wide range of uses. We aim to construct 3D maps of dust extinction in the Local Arm and surrounding regions. Methods. To do this, Gaia EDR3 photometric data were combined with 2MASS measurements to derive extinction towards stars with accurate photometry and relative uncertainties on EDR3 parallaxes of less than 20%. We applied our hierarchical inversion algorithm adapted to inhomogeneous spatial distributions of target stars to this catalogue of individual extinctions. Results. We present the updated 3D dust extinction distribution and provide an estimate of the error on integrated extinctions from the Sun to each area in the 3D map. The full computational area is similar to the one of the previous DR2 map, that is to say with a 6 × 6 × 0.8 kpc3 volume around the Sun. Due to the addition of fainter target stars, the volume in which the clouds can be reconstructed has increased. Due to the improved accuracy of the parallaxes and photometric data in EDR3, extinctions among neighbouring targets are more consistent, allowing one to reach an increased contrast in the dense areas, while cavity contours are more regular. We show several comparisons with recent results on dust and star distributions. The wavy pattern around the Plane of the dust concentrations is better seen and exists over large regions. Its mean vertical peak-to-peak amplitude is of the order of 300 pc; interestingly, it is similar to the vertical period of the spectacular snail-shaped stellar kinematical pattern discovered in Gaia data. Conclusions. The Gaia EDR3 catalogue allows for a significant improvement of the extinction maps to be made, both in extent and quality. The hierarchical technique confirms its efficiency in the inversion of massive datasets. Future comparisons between 3D maps of interstellar matter and stellar distributions may help to understand which mergers or internal perturbations have shaped the Galaxy within the first 3 kpc.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3