The ALPINE-ALMA [CII] survey: The population of [CII]-undetected galaxies and their role in the L[CII]-SFR relation

Author:

Romano M.ORCID,Morselli L.,Cassata P.,Ginolfi M.,Schaerer D.,Béthermin M.,Capak P.,Faisst A.,Le Fèvre O.,Silverman J. D.,Yan L.,Bardelli S.,Boquien M.,Dessauges-Zavadsky M.,Fujimoto S.,Hathi N. P.,Jones G. C.,Koekemoer A. M.,Lemaux B. C.,Méndez-Hernández H.,Narayanan D.,Talia M.,Vergani D.,Zamorani G.,Zucca E.

Abstract

The [CII] 158 μm emission line represents one of the most profitable tools for the investigation of the high-redshift galaxies in the early Universe so far. Being one of the brightest cooling lines in the rest-frame far-infrared regime of star-forming galaxies, it has been successfully exploited as a tracer of the star-formation rate (SFR) in local sources. The picture is more complex at higher redshifts, where its usability in this context is still under investigation. Recent results from the ALMA Large Program to INvestigate [CII] at Early times (ALPINE) survey suggest that there is no (or weak) evolution of the L[CII]-SFR relation up to z ∼ 6, but their reliability is hampered by the presence of a large population of [CII] nondetected galaxies. In this work, we characterize the population of [CII] nondetections in ALPINE. By stacking their ALMA spectra, we obtained a signal detected at ∼5.1σ, resulting in a [CII] luminosity of log(L[CII]/L)∼7.8. When combining this value with those from the [CII] detections, we found a L[CII]-SFR relation with a slope b = 1.14 ± 0.11, which is in agreement within the uncertainties both with the linear relation found in the local Universe and with the previous findings from ALPINE at z ∼ 5. This suggests that the [CII] line can be considered a good tracer of star formation up to the distant Universe. Finally, we show that the galaxies of our sample that deviate from the observed L[CII]-SFR relation most could suffer from a less precise redshift estimation, perhaps artificially reducing their [CII] luminosity. In this respect, we claim that there is no evidence in favor of a deficit of [CII] content in high-z galaxies, in contrast with earlier studies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3