Occurrence and statistics of IRIS bursts

Author:

Kleint LuciaORCID,Panos BrandonORCID

Abstract

Small reconnection events in the lower solar atmosphere can lead to its heating, but whether such heating can propagate into higher atmospheric layers and potentially contribute to coronal heating is an open question. We carry out a large statistical analysis of all IRIS observations from 2013 and 2014. We identified “IRIS burst” (IB) spectra using a k-means analysis that entails classifying and selecting Si IV spectra with superimposed blend lines on top of bursts, which indicate low atmospheric heating. We find that ∼8% of all observations show IBs with about 0.01% of all recorded IRIS spectra being IB spectra. We find varying blend absorption levels, which may indicate different depths of the reconnection event and heating. IRIS bursts are statistically visible with similar properties and timings in the spectral lines Mg II, C II, and Si IV, but invisible in Fe XXI. By statistically analyzing co-spatial AIA light curves, we found systematic enhancements in AIA 1600 and AIA 1700, but no clear response to bursts in all other AIA wavelengths (94, 131, 171, 193, 211, 304, 335) in a time-frame of ±6 min around the burst. This may indicate that heating due to IBs is confined within the lower atmosphere and dissipates before reaching temperatures or formation heights covered by the hotter AIA lines. Our developed methods are applicable for statistical analyses of any co-observed data sets and allow us to efficiently analyze millions of spectra and light curves simultaneously.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3