The VLT-FLAMES survey of massive stars

Author:

Lennon D. J.,Dufton P. L.,Villaseñor J. I.,Evans C. J.,Langer N.,Saxton R.,Monageng I. M.,Toonen S.

Abstract

Context. NGC 2004#115 was classified as a single lined Be spectroscopic binary in the Large Magellanic Cloud. Its Hα morphology is reminiscent of the Galactic systems LB-1 and HR 6819, both of which are proposed as either Be+BH or Be+stripped He-star systems. Aims. Multi-epoch optical spectra of NGC 2004#115 are used to determine if this binary can be explained by either of these two scenarios, and hence shed additional light on these interesting systems. Methods. VLT-FLAMES and SALT-HRS data covering a baseline of ∼20 years were analyzed to determine radial velocities and orbital parameters, while non-LTE model atmospheres were used to determine stellar parameters and the relative brightness of the system components. Archive MACHO, Gaia, and XMM-Newton data provide additional constraints on the system. Results. NGC 2004#115 is found to be a triple system consisting of an inner binary with a period P = 2.92 d, eccentricity e ∼ 0.0, and mass function f = 0.07 M. The only firmly detected star in this inner binary is a B2 star, the primary, with a projected rotational velocity (ve sin i) of 10 km s−1 and a luminosity of log L/L = 3.87. It contributes ∼60% of the total V-band light, with the tertiary contributing the other ∼40% of the light, while the secondary is not detected in the optical spectrum. The possibility that the primary is a low mass inflated stripped star is excluded since its Roche radius would be smaller than its stellar radius in such a compact system. A main sequence star of mass 8.6 M is therefore inferred; however, the assumption of synchronous rotation leads to a secondary mass in excess of 25 M, which would therefore be a black hole. The tertiary is detected as a fainter blended component to the hydrogen and helium lines, which is consistent with a slightly less massive B-type star, though with ve sin i ∼ 300 km s−1. The data do not permit the characterization of the outer period, though it likely exceeds 120 days and is therefore in a stable configuration. The disk-like emission is variable, but may be associated with the inner binary rather than the rapidly rotating tertiary. XMM-Newton provides an upper limit of 5 × 1033 ergs s−1 in the 0.2–12 keV band which is consistent with, though not constraining, the system hosting a quiescent B+BH binary. A number of caveats to this scenario are discussed.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stellar black holes and compact stellar remnants;Black Holes in the Era of Gravitational-Wave Astronomy;2024

2. Super slowly spinning stars in close binaries;Monthly Notices of the Royal Astronomical Society: Letters;2023-10-04

3. Dynamical formation of Gaia BH1 in a young star cluster;Monthly Notices of the Royal Astronomical Society;2023-09-12

4. A Noninteracting Galactic Black Hole Candidate in a Binary System with a Main-sequence Star;The Astronomical Journal;2023-06-08

5. A partially stripped massive star in a Be binary at low metallicity;Astronomy & Astrophysics;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3