AB Aur, a Rosetta stone for studies of planet formation

Author:

Rivière-Marichalar P.,Fuente A.,Esplugues G.,Wakelam V.,le Gal R.,Baruteau C.,Ribas A.,Macías E.,Neri R.,Navarro-Almaida D.

Abstract

Context. The sulfur abundance is poorly known in most environments. Yet, deriving the sulfur abundance is key to understanding the evolution of the chemistry from molecular clouds to planetary atmospheres. We present observations of H2S 110–101 at 168.763 GHz toward the Herbig Ae star AB Aur. Aims. We aim to study the abundance of sulfuretted species toward AB Aur and to constrain how different species and phases contribute to the sulfur budget. Methods. We present new NOrthern Extended Millimeter Array (NOEMA) interferometric observations of the continuum and H2S 110–101 line at 168.763 GHz toward AB Aur. We derived radial and azimuthal profiles and used them to compare the geometrical distribution of different species in the disk. Assuming local thermodynamical equilibrium (LTE), we derived column density and abundance maps for H2S, and we further used Nautilus to produce a more detailed model of the chemical abundances at different heights over the mid-plane at a distance of r = 200 au. Results. We have resolved H2S emission in the AB Aur protoplanetary disk. The emission comes from a ring extending from 0.67″ (~109 au) to 1.69″ (~275 au). Assuming T = 30 K, nH = 109 cm−3, and an ortho-to-para ratio of three, we derived a column density of (2.3 ± 0.5) × 1013 cm−2. Under simple assumptions, we derived an abundance of (3.1 ± 0.8) × 10−10 with respect to H nuclei, which we compare with Nautilus models to deepen our understanding of the sulfur chemistry in protoplanetary disks. Chemical models indicate that H2S is an important sulfur carrier in the solid and gas phase. We also find an important transition at a height of ~12 au, where the sulfur budget moves from being dominated by ice species to being dominated by gas species. Conclusions. We confirm that present-day models still struggle to simultaneously reproduce the observed column densities of the different sulfuretted species, and the observed abundances are still orders of magnitude away from the cosmic sulfur abundance. Studying sulfuretted species in detail in the different phases of the interstellar medium is key to solving the issue.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3