Photometric properties of nuclear star clusters and their host galaxies in the Fornax cluster

Author:

Su Alan H.ORCID,Salo HeikkiORCID,Janz Joachim,Venhola AkuORCID,Peletier Reynier F.ORCID

Abstract

Aims. We aim to investigate the relations between nuclear star clusters (NSCs) and their host galaxies and to offer a comparison between the structural properties of nucleated and non-nucleated galaxies. We also address the environmental influences on the nucleation of galaxies in the Fornax main cluster and the Fornax A group. Methods. We selected 557 galaxies (105.5M < M*, galaxy < 1011.5M) for which structural decomposition models and non-parametric morphological measurements are available from our previous work. We determined the nucleation of galaxies based on a combination of visual inspection of galaxy images and residuals from multi-component decomposition models, as well as using a model selection statistic, the Bayesian information criterion (BIC), to avoid missing any faint nuclei. We also tested the BIC as an unsupervised method to determine the nucleation of galaxies. We characterised the NSCs using the nucleus components from the multi-component models conducted in the g′, r′, and i′ bands. Results. Overall, we find a dichotomy in the properties of nuclei that reside in galaxies more or less massive than M*, galaxy ≈ 108.5M. In particular, we find that the nuclei tend to be bluer than their host galaxies and follow a scaling relation of $ M_{\mathrm{*,nuc}} \propto {M_{\mathrm{*,galaxy}}}^{0.5} $ for M*, galaxy < 108.5M. In galaxies with M*, galaxy > 108.5M⊙,  we find redder nuclei compared to the host galaxy, which follows M*, nuc ∝ M*, galaxy. Comparing the properties of nucleated and non-nucleated early-type galaxies, we find that nucleated galaxies tend to be redder in global (g′−r′) colour, have redder outskirts relatively to their own inner regions (Δ(g′−r′)), are less asymmetric (A), and exhibit less scatter in the brightest second-order moment of light (M20) than their non-nucleated counterparts at a given stellar mass. However, with the exception of Δ(g′−r′) and the Gini coefficient (G), we do not find any significant correlations with cluster-centric distance. Yet, we find the nucleation fractions to be typically higher in the Fornax main cluster than in the Fornax A group, and that the nucleation fraction is highest towards the centre of their respective environments. Additionally, we find that the observed ultra-compact dwarf (UCD) fraction (i.e. the number of UCDs over the number of UCDs and nucleated galaxies) in Fornax and Virgo peaks at the cluster centre and is consistent with the predictions from simulations. Lastly, we find that the BIC can recover our labels of nucleation up to an accuracy of 97% without interventions. Conclusions. The different trends in NSC properties suggest that different processes are at play at different host stellar masses. A plausible explanation is that the combination of globular cluster in-spiral and in situ star formation play a key role in the build-up of NSCs. In addition, the environment is clearly another important factor in the nucleation of galaxies, particularly at the centre of the cluster where the nucleation and UCD fractions peak. Nevertheless, the lack of significant correlations with the structures of the host galaxies is intriguing. Finally, our exploration of the BIC as a potential method of determining nucleation have applications for large-scale future surveys, such as Euclid.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3